
Maven
Szolgáltatásorientált rendszerintegráció

Service-Oriented System Integration

Dr. Balázs Simon

BME, IIT



Maven

 Build tool and dependency management system

 Maven configuration is in XML: pom.xml
 declarative description of version information, dependencies and build steps

 Maven promotes convention over configuration:
 consistent project structure
 consistent build model

 Maven is extensible with plugins
 e.g. generating files, running special tests, creating special artifacts, etc.

 Maven build artifact:
 usually a JAR file
 three properties:

 group id: identifier of the organization (usually the DNS name in reverse order)
 artifact id: identifier of the artifact within the group
 version: semantic version number

 Maven stores build artifacts and their dependency information in 
repositories

Dr. Balázs Simon, BME, IIT 2



Maven repository

 Repositories hold build artifacts (usually JAR files) and their 
dependency information

 Two types of repositories:
 local: local computer (~/.m2/ folder)

 it is a cache of remote downloads
 also contains own build artifacts not yet released

 remote: remote server
 provides build artifacts for downloading

 Remote repository:
 public: available for everyone
 internal: internal use for a company to store private build artifacts for sharing 

between teams and for releases

 Remote repositories must be configured for maven: this is where it 
will look for build artifacts

 Maven central repository: http://central.maven.org/maven2/
 special public repository
 contains the most commonly used jars and all their dependencies
 all well known open-source jars are in there (Apache, RedHat, ...)

Dr. Balázs Simon, BME, IIT 3



Company’s intranet

Internet

Maven repositories

Dr. Balázs Simon, BME, IIT 4

Developer’s
computer

~/.m2/

Developer’s
computer

~/.m2/

Developer’s
computer

~/.m2/

Internal
maven

repository

Public
maven

repository

Individual 
developer’s
computer

~/.m2/



Maven project structure

 Maven promotes convention over configuration:
 fix project structure

 (can be overridden if needed, but it is rarely done)

Dr. Balázs Simon, BME, IIT 5

Standalone application: Web application:

project root

src

target

main

java

resources

test

java

resources

project root

src

target

main

java

resources

test

java

resources

webapp

Test files

Java sources

Non-Java files

Created during build
pom.xml

pom.xml



Maven archetypes

 Maven can generate projects with default contents

 Maven archetypes are templates for these projects
 e.g. standalone application, web application, etc.

Dr. Balázs Simon, BME, IIT 6

Web application:

Standalone application:

mvn archetype:create
-DgroupId=[your project's group id]
-DartifactId=[your project's artifact id]

mvn archetype:create
-DgroupId=[your project's group id]
-DartifactId=[your project's artifact id]
-DarchetypeArtifactId=maven-archetype-webapp

And there are a lot of other archetypes…
You can even create your own.



Maven build steps

 Maven has a predefined set of steps in the build process
 can be customized, if needed

 The build process is incremental: only the changed parts are rebuilt
 Do not call clean everytime, otherwise the build process will take very long!

Dr. Balázs Simon, BME, IIT 7

validate

compile

test

package

verify

install

deploy

Build lifecycle: Clean lifecycle:

clean

Example commands:

mvn clean
mvn package
mvn clean deploy



Maven example: pom.xml

Dr. Balázs Simon, BME, IIT 8

<?xml version="1.0" encoding="utf-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

<groupId>com.companyname.project-group</groupId>
<artifactId>project</artifactId>
<version>1.0</version>

</project>

Group identifier

Artifact identifierVersion

Our project’s 
identifier

project-1.0



Maven version numbers

 Semantic version numbers: X.Y.Z-Q-W
 X: major (number)

 incremented on incompatible API changes

 Y: minor (number)
 incremented on backwards compatible API changes

 Z: patch (number, optional)
 incremented on backwards compatible bug fixes, no API changes

 Q: qualifier (string, optional)
 e.g. alpha, beta, snapshot, etc.

 W: build (number, optional)

 Examples:
 1.2, 2.0, 2.1.1, 3.2.4-SNAPSHOT, 5.1.2-alpha-4

Dr. Balázs Simon, BME, IIT 9



Maven dependencies

Dr. Balázs Simon, BME, IIT 10

<?xml version="1.0" encoding="utf-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

<groupId>com.companyname.project-group</groupId>
<artifactId>project</artifactId>
<version>1.0</version>

<dependencies>
<dependency>

<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.8.2</version>
<scope>test</scope>

</dependency>
</dependencies>

</project>

Dependency identifier
(transitive dependencies will be
collected automatically)

Scope of the dependency

project-1.0

junit-4.8.2



Maven dependencies

 Dependencies define the required build artifacts (JARs)

 Dependency: group id + artifact id + version number reference
 version number reference: exact number or range
 examples:

 1.3: generally means 1.3 or later, i.e. [1.3,)
 [1.0]: exactly 1.0
 [1.2,1.3]: 1.2 <= x <= 1.3
 [1.0,2.0): 1.0 <= x < 2.0
 [1.5,): x >= 1.5

 A dependency can have an optional scope (compile is the default):
 compile: required in all build phases, also propagated to dependent projects
 provided: required only in the compilation and test phase, at runtime it is 

provided by the environment (e.g. JDK, web server, etc.)
 runtime: not required for compilation, but it is for execution
 test: only required for the test compilation and test execution phases
 system: similar to provided, but we have to specify the path of the JAR 

explicitly for the local system (at runtime it will be provided by the 
environment)

 import: use dependencies from another pom.xml

Dr. Balázs Simon, BME, IIT 11



Maven dependency resolution

 Maven builds a tree from the dependencies and from all their 
transitive dependencies

 But Maven cannot use multiple versions of the same JAR at the 
same time

 It has to select a specific version:
 based on the version number ranges
 based on compatibility (minor, patch)
 based on the distance from the

root of the tree
 based on which comes first

 The dependency resolution algorithm is complex, but Maven 
will try its best

 Maven will report conflicts if it cannot perform the resolution 
correctly (e.g. version ranges don’t overlap)
 solution: dependencyManagement section in the POM

Dr. Balázs Simon, BME, IIT 12

POM

commons-
logging 1.1

log4j-1.2.13

log4j-1.2.12 servlet-2.3



Maven dependency management

 There is a dependencyManagement section in the POM

 We can specify the exact artifact version we want to use 
for the whole project
 uses exact versions

 overrides transitive dependencies

 can be used for dependency conflict resolution

 It can also be used in a hierarchical Maven project to 
centralize dependency information for child projects
 simpler to define them in one common POM than to repeat 

them in all child POMs

Dr. Balázs Simon, BME, IIT 13



Maven dependency management example

14

<?xml version="1.0" encoding="utf-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

<groupId>com.companyname.project-group</groupId>
<artifactId>project</artifactId>
<version>1.0</version>

<dependencyManagement>
<dependencies>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.8.2</version>
<scope>test</scope>

</dependency>
</dependencies>

</dependencyManagement>
<dependencies>
<!-- ... -->

</dependencies>
</project>

project-1.0

junit-4.8.2

Dependency management: 
Exact dependencies

Other dependencies



Maven project hierarchies

 Maven can also handle project hierarchies

 The root project references the children as modules

 The child projects reference the parent project

 Maven commands executed from the root will be 
also executed on the children
 e.g. mvn clean, mvn test, etc.

 Children will inherit the root’s configurations and 
dependencies

15

root-project

project1

project2

pom.xml

pom.xml

pom.xml

pom.xml
<project>

<modelVersion>4.0.0</modelVersion>

<groupId>com.mycompany.app</groupId>
<artifactId>root-project</artifactId>
<version>1.0</version>
<packaging>pom</packaging>

<modules>
<module>project1</module>
<module>project2</module>

</modules>
</project>

pom.xml
<project>

<parent>
<groupId>com.mycompany.app</groupId>
<artifactId>root-project</artifactId>
<version>1.0</version>

</parent>
<modelVersion>4.0.0</modelVersion>
<artifactId>project1</artifactId>

</project>

Parent of other Maven projects

Group id and version number are 
inherited from the parent



Properties of Maven

 Advantages:
 consistency

 new team members know immediately everything
 clear convention for the project structure
 clear convention for the build steps

 well established, well supported
 easy to find solutions for problems on the net

 declarative dependencies are easy to write and maintain
 Maven resolves transitive dependencies automatically

 great IDE support for Eclipse, IntelliJ

 Disadvantages:
 too rigid: hard to deviate from the convention

 but it’s usually not worth it: not following the convention is bad practice, new team 
members will have a hard time learning things

 can be slow
 usually when checking and downloading dependencies: as if it is downloading the 

whole internet
 can be resolved:

 keep a local copy of the dependencies once they are downloaded, and use offline mode
 use parallel builds

Dr. Balázs Simon, BME, IIT 16


