REST

Szolgaltatasorientalt rendszerintegracio
Service-Oriented System Integration

Dr. Baldzs Simon
BME, IIT

Outline

= JSON

= HTTP

= REST

= REST principles

= Criticism of REST

= CRUD operations with REST
= RPC operations with REST

= REST interface descriptors
= WSDL 2.0, Swagger, RAML, ...

JSON

Dr. Baldzs Simon, BME, IIT

JSON

= JavaScript Object Notation

= Lightweight data-interchange format

= Easy for humans to read and write

= Easy for machines to parse and generate
= More compact than XML

JSON basic types

= Number: signed decimal

" no separate types for integers and floating point numbers
= String

= double quote quotation, backslash for escaping

= Boolean: true or false
= Array:

= ordered list of zero or more values
= elements can be of any type

= Object:
= unordered collection of name-value (key-value) pairs
= keys must be unique within an object

=" null: means no value

JSON example

{
"firstName": "John",
"lastName": "Smith",
"age": 25,
"address":
{
"streetAddress": "21 2nd Street",
"city": "New York",
"state": "NY",
"postalCode": "10021"
},
"phoneNumber":
[
{
"type": "home",
"number": "212 555-1234"
},
{
"type": "fax",
"number": "646 555-4567"
}
]
}

Dr. Baldzs Simon, BME, IIT

TTP

Dr. Baldzs Simon, BME, IIT

7>

HTTP GET

@ Google - Mozilla Firefox . —-— “ -

File Edit View History Bookmarks Tools Help

GET /index.html HTTP/1.1(200 OK
HTTP/1.1 Content-Type: text/html; charset=UTF-8

v c Q + ;‘_:Vhtt_p:/‘/\;/vww.gpqg;le.com;'.index.ﬁtmi

HTTP status code

Host: www.google.com Content-Encoding: gzip
User-Agent: Mozilla/5.0 Server: gws
Connection: keep-alive Content-Length: 10200

<ldoctype html><html><head>..

Dr. Baldzs Simon, BME, IIT 8

HTTP GET: http://www.abc.com/login?user=xy&pass=123

Dr. Baldzs Simon, BME, IIT

9>

HTTP POST: http://www.abc.com/login

@ oo S

Dr. Baldzs Simon, BME, IIT

REST

Dr. Baldzs Simon, BME, IIT

{11>

REST

= REpresentational State Transfer
= RESTful HTTP

= HTTP protocol extension
= GET, POST, PUT, DELETE

" |nput parameters:
= URL part
= URL query string
= POST parameter
= HTTP body

= Result:
= HTTP body

= Very simple: testable by browser

12

GET examples

» GET /api/movies
= returns all movies
= GET /api/movies/12
= returns the movie with identifier 12
= GET /api/movies/12/actors
= returns the list of actors for the movie with identifier 12

= GET /api/movies?orderby=title
= returns all movies sorted by their titles

Dr. Baldzs Simon, BME, IIT

13

GET

= GET is for reading, retrieving resources

= Must not modify any resources!
= HTTP specification for GET

" Input parameters:
= ysually in the URL or in query parameter
= identifiers, paging, filtering and sorting criteria
= HTTP body is usually empty
= Qutput:
= in the HTTP body, usually XML or JSON
= success: 200 (OK)
= error: 404 (Not found) or 400 (Bad request)

14

POST examples
= POST /api/movies

= creates a new movie
= the content of the movie is passed in the HTTP body:

{
"title": "Batman Begins",
"year": 2005,
"director”: "Cristopher Nolan"
}

Dr. Baldzs Simon, BME, IIT

15

POST

= POST is for creating new resources
= usually for creating a new item under an existing resource item

= Care must be taken when resending POST requests
= HTTP specification (e.g. credit card transaction)
= the server creates the resource whenever a POST request is made

= multiple identical POST requests may result in more than one
resources with the same content

= [nput:
= URL: location of the parent resource
= HTTP body: the content of the child resource to be created

= OQutput:

= usually the identifier or location (Location HTTP header) of the
resource created

= success: 201 (Created)
= error: 404 (Not found) or 409 (Conflict)

16

PUT examples
= PUT /api/movies/12

= updates the movie with identifier 12
= or creates a new movie if it does not exist

= the content of the movie is passed in the HTTP body:

{
"title": "Batman Begins",
"year": 2005,
"director”: "Cristopher Nolan"
}

Dr. Balazs Simon, BME, IIT

17

PUT

= PUT is for updating a resource
= or creating a new one if it did not exist

" |nput:
= URL of the resource to be updated

= the URL contains the identifier of the resource
= this will be the identifier on creation
= so no multiple resources are created when repeating the PUT operation

= HTTP body: the new content of the resource

= Qutput:
= HTTP body may be empty
" no identifier or location is necessary
= success: 204 (No content), 201 (Created), 200 (OK)
= error: 404 (Not found)

18

DELETE examples
=" DELETE /api/movies/12

= deletes the movie with identifier 12

= DELETE /api/movies/12/actors/65
= deletes the actor 65 from the movie 12

Dr. Baldzs Simon, BME, IIT

19

DELETE

= DELETE is for deleting a resource

" |nput:
= URL of the resource to be deleted
= the URL contains the identifier of the resource
= HTTP body is usually empty

= Qutput:
= either an empty HTTP body

= or the content of the deleted resource
= careful with this: it may be very large

= success: 204 (No content) or 200 (OK)
= error: 404 (Not found)

20

REST parameter passing

Dr. Baldzs Simon, BME, IIT

{21>

Input parameters

= Query parameter:
= http://.../calculator/add?left=3.0&right=5.0

= Path parameter:
= http://.../calculator/add/3.0/5.0

= Matrix parameter:
= http://.../calculator/add;left=3.0;right=5.0

= POST parameter:

= http://.../calculator/add
= |ike the query parameter but inside the HTTP body

= HTTP body:

= a serialized resource (e.g. in XML or JSON)

" Expected result data format: HTTP “Accept” header
= for XML: application/xm|
= for JSON: application/json

Dr. Baldzs Simon, BME, IIT

22

Output result

" |n HTTP body

= Actual data format: HTTP “Content-Type” header

= or if the server could not support the requested data format:
HTTP 406 (Not acceptable)

= Usual data formats:
= XML
= JSON

Dr. Baldzs Simon, BME, IIT

23

XML result

curl -v -X GET -H"Accept: application/xml™

http://localhost:8080/RestAppl/resources/person/getpb

> GET /RestAppl/resources/person/getpb HTTP/1.1
> User-Agent: curl/7.20.1 (i686-pc-cygwin) ..
> Host: : 8080

>

< HTTP/1.1 200 OK
< X-Powered-By: Servlet/3.0

< Ser‘vei"ﬂiier‘ Open Source Edition 3.0.1
< Content-Length:

< Date: Sun, 13 Mar 2011 12:21:17 GMT

<

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<person><name>Peter Bishop</name><age>27</age>
<friends><name>0livia Dunham</name><age>26</age></friends>
<friends><name>Bolivia Dunham</name><age>26</age></friends>
</person>

Dr. Baldzs Simon, BME, IIT

24

XML result

curl -v -X GET -H"Accept: application/json”

http://localhost:8080/RestAppl/resources/person/getpb

> GET /RestAppl/resources/person/getpb HTTP/1.1
> User-Agent: curl/7.20.1 (i686-pc-cygwin) ..

> Host" W ii@

>
< HTTP/1.1 200 OK
< X-Powered-By: Servlet/3.0

Wurce Edition 3.0.1
< Transfer-Encoding: chunked

< Date: Sun, 13 Mar 2011 12:21:19 GMT
<

"name" : "Peter Bishop","age":"27",

"frlends :[{"name":"0livia Dunham","age":"26"},

"name" :"Bolivia Dunham","age"°"26"}]}

Dr. Baldzs Simon, BME, IIT

25

REST principles

Dr. Baldzs Simon, BME, IIT

26>

REST principles

= |dentifying resources

= Linking things

= CRUD operations

= Multiple data representation
= Stateless communication

Dr. Baldzs Simon, BME, IIT

27

|dentifying resources

= URI: Universal Resource ldentifier
" base of resource identification (URN, URL)

= URN: Universal Resource Name
= URI that does not contain location information
= e.g.urn:isbn:0307346617
= pro: valid forever
= con: contain no information on their resolution

= URL: Universal Resource Locator
= URI that contains location information

= con: may not be valid forever, especially if they contain
technology-specific parts, e.g.
http://someserver.com/ActionServlet?blah=blah

= but they can be used correctly, e.g.
http://companyl.com/customer/123456

Dr. Balazs Simon, BME, IIT

28

|dentifying resources
= Use URLs!

= unique identifier for the resource
= easy to resolve due to the location information
= should be independent of the underlying technology

= Examples for resources:
= documents (blogs, news, etc.)
= data (calculation result, metadata, etc.)
= services (SOAP web service, REST, etc.)
= concepts (people, organizations, etc.)

Dr. Baldzs Simon, BME, IIT

29

Linking things

= URLs must be chosen carefully

" Has a lot of advantages:
= easy to forward
= resource behind it can be accessed later
= analogy: C++ pointers

" more secure: easier to configure access rights to the resource

Dr. Balazs Simon, BME, IIT 30

Processing URLs

= URL seems hierarchic

= Client:
= should not process the contents of an URL
= should only use it as a reference
= |ike browsers
= the structure of the URL may change by time

= Hence, no need for interface description

= The four basic operations are enough for handling
resources: GET, POST, PUT, DELETE

31

Standard operations on resources

= CRUD: create, read, update, delete

= Properties (from the HTTP specification):

= safe: the client only retrieves data, it is not responsible for side
effects

= [dempotent: repeating the same operation results in the same
state

= Repeating different idempotent operations may result in
different results

" e.g. read-delete-read

= Repeating operations without side effects has the same
results

Dr. Balazs Simon, BME, IIT 32

Standard operations

read
POST create no no no
PUT update/ no yes no
create
DELETE delete no yes no

POST: the servers assigns the identifier
PUT: the client assigns the identifier

Dr. Baldzs Simon, BME, IIT (33)

Multiple data representation
= HTML:

= only for humans
= structure may often change
= computers require more formal representation (e.g. XML, JSON)

= The client should be able to choose between the
representations

= A possible but bad solution:
= http://companyl.com/2009/report.html
= http://companyl.com/2009/report.xml
= http://companyl.com/2009/report.xls

= Correct solution: “Accept” HTTP header, e.g.

" GET /2009/report HTTP/1.1
Host: companyl.com
Accept: application/xml

" If the server does not support it, it may send: HTTP 406 Error

Dr. Balazs Simon, BME, IT 34

Stateless communication

= REST is stateless

= But the application may have a state:

= stored in a resource (not in memory)

= stored on the client side (always sent to the server)
= Advantage:

= scalability: no session required on the server side

= different server instances may serve the same client with serial
requests

= server instances can be stopped and restarted

Dr. Baldzs Simon, BME, IIT

35

Criticism of REST

Dr. Baldzs Simon, BME, IIT

{362

REST criticism

= Only usable for CRUD operations

= No interface description

= Reveals too many internal details

= Lack of design guidelines

= Lack of middleware functions

= No publish-subscribe and asynchronous communication

37

Only usable for CRUD operations

" |t can be used for other operations, e.g.:
= http://example.com/sum?a=2&b=3

= But this is cheating:
= the URI must uniquely identify the resource

=" No cheating:
= the resource is the sum of two and three

= Question: which HTTP method to use?
= GET is sufficient: cacheable, no side effect, safe, idempotent

= But: usually we need side effects. Which HTTP method to
use in this case?

= POST
= the server can respond with a URI pointing to the result
= the result can be retrieved by a redirect, it is reusable, cacheable

Dr. Balazs Simon, BME, IIT 38

No interface description

" Interface description:
= describes the operation and their parameters
"= No semantics
= used for: generating client proxy and server skeleton

= REST:

= only 4 operations
= data: usually in XML (can be checked by XSD), or in JSON

= Recommended solution:
= textual description about the semantics of the operations
= e.g. description in HTML for a GET

" There are formal descriptors:

= WADL (Web Application Description Language), WSDL 2.0, Swagger,
RAML, ...

= but they are not widely supported (e.g. .NET does not support them)

Dr. Balazs Simon, BME, IIT 39

Reveals too many internal details

= Mapping a database to REST shows the database structure

= REST does not mean that the inner database
representation must be published

= REST should have a protective logic before accessing the
database

= REST is data centric instead of operation centric

= Rule: publish the resources through a URI
= they can be protected easier

= Other operations besides CRUD
= these can be as complex as a SOAP or RPC call
= can execute business logic and protect the database

40

Lack of design guidelines

= No official best-practices
= No standard solution for the usual tasks

= No recommendation for transforming existing services to
REST

= No recommendation for the URI format

= These critics are not true anymore
= there are guidelines
= not standard, but quasi-standard

Dr. Baldzs Simon, BME, IIT 41

Lack of middleware aspects

= No transactions:
= true

= No security:
= message-level security: true

= point-to-point security: there is HTTPS
= but: don’t pass parameters in the URL

" No reliable messaging
= we cannot be sure whether the operation succeeded
= if HTTP 200 OK: we know it’s a success
= if no answer: we can’t be sure
= but: idempotent operations (GET, PUT, DELETE) can be resent
= we have to be careful with POST

" These critics are true, but REST was never designed for these
= use SOAP and WS-* when these middleware aspects are required

Dr. Baldzs Simon, BME, IT 42

No publish-subscribe and asynchronous communication

= REST: client-server model

= Publish-subscribe:
= RSS is a possible solution
= GET operation, can be cached
= but: the client is the initiator
= notification-by-polling

= Asynchrnonous operations:

= if the server has to perform a long task
= solution: reply with HTTP 202 Accepted

" responses:
= the server can return the URI of the result, the client can poll at this URI
= the client passes a URI to the server, the server can send the result here

Dr. Baldzs Simon, BME, IT 43

CRUD operations with
REST

Dr. Baldzs Simon, BME, IIT

{a4)

CRUD operations

= POST: creating a new resource (create)
= GET: retrieving resources (read)

= PUT: updating a resource (update)

= PATCH: partially updating a resource
= but PATCH is not widely supported

* DELETE: deleting a resource (delete)

Dr. Baldzs Simon, BME, IIT

45

Resource types

= Collection (~ database table)

= a collection of instances

= e.g. /api/movies, /api/movies/12/actors
= Instance (~ database record)

= a single entity with attributes and values

= selected from a collection by its identifier
= e.g. /api/movies/12, /api/movies/12/actors/53

= (Database is only an analogy! Do not publish a database
directly through REST!)

Dr. Balazs Simon, BME, IIT

46

GET: read
» GET /api/movies

= returns all the movies

= GET /api/movies/12
= returns the movie with identifier 12

Dr. Baldzs Simon, BME, IIT

47

DELETE: delete
=" DELETE /api/movies/12

= deletes the movie with identifier 12

=" DELETE /api/movies
= deletes all movies
= often not intended: do not use it!

Dr. Baldzs Simon, BME, IIT

48

PUT: full update or create
= PUT /api/movies/12

= updates the movie with identifier 12

= full update: the resource will be completely replaced
= question: how to make partial updates?
= PATCH method? it is not widely supported...

= or creates a movie with identifier 12 if it does not exists

Dr. Balazs Simon, BME, IIT

49

POST: create or partial update
= POST /api/movies

= creates a new movie

= jdentifier is assigned by the server
= the identifier or the new resource should be returned

= POST /api/movies/12
= invalid for creation: the server should assign the identifier

= but it can be used for partial update: only the fields sent in the
request will be updated

= the updated resource should be returned

Dr. Balazs Simon, BME, IIT 50

RPC operations with REST

Dr. Balézs Simon, BME T (51)

RPC with REST
= REST is not designed for RPC

= REST is for handling resources
" But: REST can be used for RPC

= Request:

= always POST
= other HTTP methods are not used

= wrapper message in the HTTP body for the operations of the service
= root name: the name of the operation
= children of the root: parameters of the operation

= other parameter passing methods are not used

= Response:
= wrapper message containing the single return result

= Like SOAP document/wrapped but without the SOAP envelope

" Interface description:
= interface must be documented
= provide XSD for the clients

52

RPC service example

struct Complex

{

double Re;
double Im;

}

interface
{
Complex
Complex
Complex
Complex

Dr. Baldzs Simon, BME, IIT

Calculator

Add(Complex left, Complex right);
Subtract(Complex left, Complex right);
Multiply(Complex left, Complex right);
Divide(Complex left, Complex right);

53

REST request example

= Recommended:
= POST /api/calculator/Add
= POST /api/calculator/Subtract
" etc.

= HTTP body:

<Add>
<left>
<Re>4.5</Re>
<Im>»3.1</Im>
</left>
<right>
<Re>7.2</Re>
<Im>»9.3</Im>
</right>
</Add>

Dr. Baldzs Simon, BME, IIT

}

"left":

}s

"right":

}

IIReII :
llImII :

llReII :
llImII :

54

REST response example
= HTTP body:

<AddResponse>
<AddResult>
<Re>11.7</Re>
<Im>12.4</Im>
</AddResult>
</AddResponse>

Dr. Baldzs Simon, BME, IIT

"AddResult": {

}

llReII :
llImII :

ll11.7ll’
"12.4"

55

REST interface
descriptors

Dr. Baldzs Simon, BME, IIT

{562

REST interface descriptors

= No standard and widely supported interface descriptor,
but there are a lot of initiatives

WSDL 2.0, WADL

= neither is widely adopted
= mostly because of poor human readability

OpenAPI (formerly Swagger)

= open-source, language agnostic, extensible into new technologies and protocols
beyond HTTP

= code generators for many languages
= very popular
= no built-in support in WCF and JAX-RS

RAML (RESTful API Modeling Language)
= general APl description language
= more readable than Swagger

= good for designing an APl from scratch
= Swagger is best suited to documenting existing API

= no built-in support in WCF and JAX-RS

API Blueprint
= good for designing an APl from scratch

||
Dr. E.SéTézs Simon, BME, IIT 57

Swagger example

{
"swaggerVersion": "1.2",
"basePath": "http://localhost:8000/greetings",
"apis": [
{
"path": "/hello/{subject}",
"operations": [
{
"method": "GET",
"summary": "Greet our subject with hello!",
"type": "string",
"nickname”: "helloSubject”,
"parameters": [
{
"name": "subject",
"description”: "The subject to be greeted.",
"required”: true,
"type": "string",
"paramType”: "path"
}
]
}
]
}
1,

Dr. Baldzs Simon, BME, IIT

}

"models": {} (58)

RAML example

#%RAML 1.0

title: GitHub API

version: v3

baseUri: https://api.github.com
mediaType: application/json

securitySchemes:
oauth_2 0: !include securitySchemes/oauth_2 0.raml
types:

Gist: !include types/gist.raml
Gists: linclude types/gists.raml

resourceTypes:
collection: !include types/collection.raml
traits:
securedBy: [oauth_2 0]
/search:
/code:
type: collection
get:

59

