
Designing, developing and
testing services

Szolgáltatásorientált rendszerintegráció

Service-Oriented System Integration

Dr. Balázs Simon

BME, IIT

Outline

 Interface design guidelines

 Web service guidelines

 REST guidelines

 Versioning guidelines

 Testing services

Dr. Balázs Simon, BME, IIT 2

Interface design
guidelines

Dr. Balázs Simon, BME, IIT 3

Stateless service

 Design the interface for stateless interaction

 Server side should not store state in memory

 Solutions:
 store state in persistent storage (e.g. database) on the server

side, transfer identifiers between the client and server

 store state on the client side and transfer it in every call

 Stateless applications scale better

4Dr. Balázs Simon, BME, IIT

Synchronous and asynchronous calls

 Synchronous call: client waits for the result

 Asynchronous call: client starts the process and continues

 Do not mix synchronous and asynchronous calls in a single
interface

 Define separate interfaces instead

 Long running activities with synchronous calls:
 start the activity in background or throw an exception

 return immediately from the operation

 the client can access/get the result later

5Dr. Balázs Simon, BME, IIT

Exceptions

 Define exceptions (faults)

 Use request-response operations

 Throw exception if the request cannot be completed

 Use both error codes and textual description in exceptions
 Error code: for automatic processing

 Textual description: for humans
 also include information to resolve the problem

6Dr. Balázs Simon, BME, IIT

Implementation-specific parameters

 Avoid putting implementation-specific parameters into
the interface

 Use only general data types

 Use only general identifiers

 Do not publish:
 internal identifiers

 special data types

 special encodings

7Dr. Balázs Simon, BME, IIT

Granularity

 Fine-grained operations:
 each query returns a small portion of data

 lot’s of calls are required

 Coarse-grained operations:
 a single query returns all the data

 lot’s of unnecessary data transferred

 Recommendation:
 use general, reusable operations

 lean toward coarse-grained operations, since the network
overhead may be large

8Dr. Balázs Simon, BME, IIT

Overloading

 Overloading: same operation name with different
parameter types

 Do not use overloading in interfaces

 Do not use templates and generics in interfaces

 Overloads and generics cannot be mapped universally to
any programming language

9Dr. Balázs Simon, BME, IIT

Responsibilities

 Define separate interfaces for different responsibilities

 If the operations of an aspect changes, only the
corresponding interface will change

 Avoid gaps and overlaps between interfaces

10Dr. Balázs Simon, BME, IIT

Paging large lists

 Large messages have a large runtime overhead

 If a list is returned, think about its size

 If returned lists can become large, provide paging for the
results

 State must be preserved somewhere

11Dr. Balázs Simon, BME, IIT

Changes

 If an interface changes:
 either make it backwards compatible

 or create a new interface and also provide access through the
old one until all the clients are updated

 Use interface versioning

 Use a service repository for storing different versions

12Dr. Balázs Simon, BME, IIT

Web service guidelines

Dr. Balázs Simon, BME, IIT 13

Development patterns

 Bottom-up: start with code to produce WSDL

 Top-down: start with WSDL to produce Java

 Round-trip: start with code/WSDL to produce WSDL/code,
and repeat the cycle

Dr. Balázs Simon, BME, IIT 14

Bottom-up steps

 1. Annotate data types

 2. Annotate service interface

 3. Implement the service interface

 4. Generate WSDL from the annotated classes
 JDK: wsgen

 Apache Axis2: java2wsdl

 .NET: SvcUtil

 5. Generate client from the generated WSDL

Dr. Balázs Simon, BME, IIT 15

Bottom-up strategy

 Advantages:
 quick way to publish services
 requires no knowledge of the WSDL
 excellent tool support

 Disadvantages:
 server side source classes may contain business logic, which

won’t be transferred to the client side
 client and server cannot be developed in parallel
 incremental changes are difficult to manage, since the interfaces

can easily become out of sync
 server side interface: code
 client side interface: WSDL

 XML namespaces are generated from source
packages/namespaces
 if the source code is refactored, the interface will break

Dr. Balázs Simon, BME, IIT 16

Top-down steps

 1. Create XSD for data types

 2. Create WSDL for the service interface

 3. Generate server side and client side code from the
WSDL
 JDK: wsimport

 Apache Axis2: wsdl2java

 .NET: SvcUtil

 4. Implement the server side and the client side

Dr. Balázs Simon, BME, IIT 17

Top-down strategy

 Advantages:
 existing XSD files can be reused

 new XSD files can also be reused across services

 parallel and independent development of the server and the
client

 incremental changes are in the WSDL, which is a common
interface

 changes in the WSDL can be made backwards compatible

 package/namespace names in the code are not affected by the
XML namespaces

 Disadvantages:
 requires detailed knowledge of XSD and WSDL

 limited tool support

Dr. Balázs Simon, BME, IIT 18

Round-trip steps

 1. Annotate data types

 2. Annotate service interface

 3. Generate WSDL from the service

 4. Change and maintain the WSDL manually

 5. Generate server side and client side interfaces from the
WSDL

 6. Implement the server and the client

Dr. Balázs Simon, BME, IIT 19

Round-trip strategy

 Advantages:
 easier to create the WSDL with existing tool support

 existing XSD files can be reused

 Disadvantages:
 some source types and XSD types may not fit nicely into the

round-trip method

 the produced WSDL may not be easily reusable and
interoperable

 maintaining the WSDL by hand is still hard

Dr. Balázs Simon, BME, IIT 20

Development pattern guideline

 Use top-down design

 Define the WSDL first

 Advantages:
 implementation has no effect on the interface

 server and client can be developed independently

 But: WSDL is hard to create manually
 recommendation: generate it from models

 or: use graphical tools

21Dr. Balázs Simon, BME, IIT

WSDL version

 WSDL 1.1
 redundant

 widespread

 well supported

 WSDL 2.0
 richer: interface inheritance, reusable bindings

 not very well supported
 supported in many Java frameworks

 not supported in .NET

 Recommendation: WSDL 1.1

Dr. Balázs Simon, BME, IIT 22

SOAP version

 SOAP 1.1
 well supported

 bound to HTTP: SoapAction header

 SOAP 1.2
 well supported

 independent of HTTP

 Recommendation:
 support both of them

Dr. Balázs Simon, BME, IIT 23

SOAP encoding

 RPC/encoded

 RPC/literal

 Document/encoded (doesn’t exist)

 Document/literal

 Document/wrapped (WS-I Compliant)

 Recommendation:
 Document/wrapped: widespread, easy to validate the message

Dr. Balázs Simon, BME, IIT 24

XSD and WSDL

 Choices:
 XSD embedded in the <types> section

 Separate XSD, imported into the WSDL

 Recommendation: separated
 WSDL is smaller and simpler

 XSD is reusable

Dr. Balázs Simon, BME, IIT 25

XSD constraints

 Examples:
 restrictions on primitive types, e.g. e-mail regexp
 choice and all complex types

 Advantages:
 interface is stricter
 can be checked at message level

 Disadvantages:
 cannot be mapped to Java/C# APIs
 have to be maintained

 Recommendation:
 use the sequence complex type
 do not use restrictions
 check constraints at application level

26Dr. Balázs Simon, BME, IIT

Common types and common code

 Types generated from XSD and WSDL

 Should be used on client and server side

 Vendor tools usually generate client side

 Recommendation:
 generate the client files

 put them in a separate project: client library

 always use the same project for the same XSD even if referenced
from multiple WSDLs

 add this project to the server and client side as a dependency if
both of them use the same programming language

27Dr. Balázs Simon, BME, IIT

API

 Programming API for web services

 Recommendation:
 Java world: Java API for XML-based Web Services (JAX-WS)

 .NET world: Windows Communication Foundation (WCF)

 Both of them are type safe

 They map classes to XSD types, interfaces to WSDLs

 JAX-WS implementations have WS-* extensions

 WCF supports WS-* by default

28Dr. Balázs Simon, BME, IIT

REST guidelines

Dr. Balázs Simon, BME, IIT 29

REST

 Designed for resources

 Not for RPC!

 Use nouns:

 Use plural nouns
 movies vs. movie, actors vs. actor

 Not verbs:

Dr. Balázs Simon, BME, IIT 30

http://example.org/movies
http://example.org/movies/58/actors

http://example.org/getMovies
http://example.org/getActorsOfMovie

REST

 Exposing the database directly:
 publishing resources is not the same as exposing the whole

database

 always check the inputs

 always authenticate the clients

 REST for RPC:
 REST can be used for XML/JSON-based RPC

 but only use it for RPC if the operation cannot be performed by
resource operations

 carefully design the service interface

Dr. Balázs Simon, BME, IIT 31

Resource types

 Collection resource

 Instance resource

Dr. Balázs Simon, BME, IIT 32

http://example.org/movies
http://example.org/movies/58/actors

http://example.org/movies/58
http://example.org/movies/58/actors/x1ca5

Behavior

 HEAD = Headers, no body

 GET = Read

 DELETE = Delete

 PUT = Create or Full Update
 client assigns the identifier

 POST = Create or Partial Update
 server assigns the identifier

 return the updated resource in the response

Dr. Balázs Simon, BME, IIT 33

PUT

 Create:

 Full Update:

Dr. Balázs Simon, BME, IIT 34

http://example.org/movies/73

http://example.org/movies/73

{
"title": "Matrix",
"actors": ["Keanu Reeves"]

}

{
"title": "Matrix",
"actors": ["Keanu Reeves", "Carrie-Anne Moss"]

}

POST

 Create:

 Partial Update:

Dr. Balázs Simon, BME, IIT 35

{
"title": "Matrix",
"actors": ["Keanu Reeves"]

}

http://example.org/movies

http://example.org/movies/79

{
"title": "The Matrix"

}

Versioning

 Version number in the URL

 Start versioning already with the initial release

 Use incremental integer version numbers:

 Do not use minor version numbers:

Dr. Balázs Simon, BME, IIT 36

http://example.org/v1/movies
http://example.org/v2/movies

http://example.org/v1.2.3/movies
http://example.org/v2.4.1.snapshot/movies

Result format

 HTTP Accept header:
 application/json
 application/xml

 Optional resource extension (overrides HTTP Accept):
 although not nice, since it is not transparent
 but: great help if testing from a browser

 Formatting the results:
 pretty print messages by default
 and use gzip compression
 again: great help if testing from a browser

 Use camelCase with JSON, since this is the JavaScript
convention

Dr. Balázs Simon, BME, IIT 37

http://example.org/movies.json
http://example.org/movies.xml

Paging of collection resources

 Collection resources can return large lists

 Provide paging by query params:
 offset: how many resources to skip

 limit: maximum number of resources to return

 Examples:

Dr. Balázs Simon, BME, IIT 38

http://example.org/movies?offset=20&limit=10
http://example.org/actors?offset=0&limit=100

Errors

 Use HTTP error codes

 Provide as much additional information as possible:
 error code: for automatic processing

 error message for the developer: provide a resolution for the
error

 error message for the end user: if it should be displayed

 link to the documentation of the error

Dr. Balázs Simon, BME, IIT 39

Security

 Always use HTTPS
 never use plain HTTP!

 Authentication:
 use API keys for authentication

 or resource content (e.g. username-password)

 never use special URLs (search engines may find them)!

 HTTP status codes:
 401 Unauthorized – invalid credentials

 403 Forbidden – valid credentials, but not allowed
(unauthorized)

Dr. Balázs Simon, BME, IIT 40

Identifiers

 Should be opaque

 Should be globally unique

 Avoid sequential numbers
 they can collide (e.g. clients using PUT)

 Use UUIDs

Dr. Balázs Simon, BME, IIT 41

Interface description

 Provide a very detailed documentation
 REST has no formal interface description language

 use Swagger or other popular formal description

 the documentation is essential

 Provide the documentation in HTML
 return it for a GET with Accept: text/html

 If XML is used for data exchange, provide XSD for the
message format

Dr. Balázs Simon, BME, IIT 42

Versioning guidelines

Dr. Balázs Simon, BME, IIT 43

Contract versioning

 Web service interface parts:
 XSD schemas for complex types

 WSDL description for the operations

 WS-* protocols

 Program code interface parts:
 classes for complex types

 interface for the operations

 Versioning:
 complex types

 interface with operations

 protocols

Dr. Balázs Simon, BME, IIT 44

Compatibility

 Backwards compatibility (or compatibility):
 the new version of the provider contract continues to support

consumers designed to work with the old version of the contract

 examples:
 adding a new operation to the service interface

 adding optional elements in the schema

 Forwards compatibility:
 the provider contract is designed so that it can support a range

of future consumer applications

 example:
 adding wildcard elements in the schema (e.g. xsd:any)

Dr. Balázs Simon, BME, IIT 45

Examples for compatible changes

 Adding a new operation to a portType

 Adding a new portType

 Adding new binding and service definitions

 Adding new optional elements to request messages

 Adding wildcards to request messages

 Adding new optional WS-Policy assertions

Dr. Balázs Simon, BME, IIT 46

Examples for incompatible changes

 Renaming an operation in a portType

 Removing an existing operation from the portType

 Adding a new fault to an operation

 Adding new required elements to messages

 Adding optional or wildcard elements to response
messages

 Renaming optional or required elements in messages

 Removing optional or required elements in messages

 Adding new required WS-Policy assertions

Dr. Balázs Simon, BME, IIT 47

Version numbers

 Version numbers could be attributes of elements
 but they are hard to handle dynamically

 handling different versions of different types at the same time
makes the application code very complex

 Version number in the XML namespace
 as a date:
<movie xmlns="http://soi/movie/2015/04">...</movie>

 as an incremental number:
<movie xmlns="http://soi/movie/v2">...</movie>

Dr. Balázs Simon, BME, IIT 48

Versioning strategies

 Strict:
 any compatible or incompatible change results in a new version

 this approach does not support backwards or forwards
compatibility

 Flexible:
 any incompatible change results in a new version

 the contract is designed for backwards compatibility

 this approach does not support forwards compatibility

 Loose:
 any incompatible change results in a new version

 the contract is designed for backwards and forwards
compatibility

Dr. Balázs Simon, BME, IIT 49

Strict versioning

 Any change results in a new contract
 XSD and WSDL target namespace is changed to a new version

 No backwards compatibility

 No forwards compatibility

 Use this strategy, if the service contract has legal
implications

 Advantages:
 full control over the evolution of the service, since compatibility

is not an issue

 Disadvantages:
 existing consumers are no longer compatible with a new version

of the contract
 older versions must be supported as long as there are

consumers who use them

Dr. Balázs Simon, BME, IIT 50

Flexible versioning

 Only an incompatible change results in a new contract
 XSD and WSDL target namespace is changed to a new version

 Retains backwards compatibility

 No forwards compatibility

 Advantages:
 compatible changes can be made
 older versions of the backwards compatible contract do not

have to be maintained

 Disadvantages:
 changes become permanent and cannot be removed without

introducing a new incompatible version
 care must be taken so that contracts do not become bloated or

convoluted

Dr. Balázs Simon, BME, IIT 51

Loose versioning

 Only an incompatible change results in a new contract
 XSD and WSDL target namespace is changed to a new version

 Difference from the previous approaches:
 how the contract is designed initially
 e.g.: xsd:any and xsd:anyAttribute in XSD

 Retains backwards compatibility

 Prepares for forwards compatibility

 Advantages:
 forwards compatibility
 range of acceptable elements can be expanded

 Disadvantages:
 we cannot prepare for any future change
 very complex application logic to handle all the cases
 vague service contracts

Dr. Balázs Simon, BME, IIT 52

Testing services

Dr. Balázs Simon, BME, IIT 53

Custom constructed clients

 Generated from WSDL or the interface is reused from the
server side

 Advantages:
 Can be easily customized

 Can be integrated into unit tests

 Similar to testing a class

 Can use advanced WS-* protocols

 Disadvantages:
 Client code has to be regenerated or updated whenever the

interface changes

 Specific for the given service

Dr. Balázs Simon, BME, IIT 54

General testing tool: SoapUI

 The most popular testing tool

 Open source

 Has all the features of the commercial products

 Features:
 functional testing
 load testing
 mock services
 Web Services
 WS-* protocols: WS-Addressing, WS-ReliableMessaging
 REST services
 JUnit integration
 Maven integration

 Disadvantages:
 limited WS-* support

Dr. Balázs Simon, BME, IIT 55

Browser plugins

 For manual (not automated) testing

 Wizdler (Chrome plugin)
 for SOAP web services
 WSDL tree
 generating sample SOAP messages
 simple but may be useful

 Advanced REST client (Chrome plugin)
 very popular
 convenient REST requests:

 verbs
 HTTP headers
 HTTP body

 XML, JSON viewer

 Chrome can also debug WebSocket connections

Dr. Balázs Simon, BME, IIT 56

