
Microservices
Szolgáltatásorientált rendszerintegráció

Service-Oriented System Integration

Dr. Balázs Simon

BME, IIT

Overview

 Monolithic applications

 Microservices

 Containers for microservices

 Docker

Dr. Balázs Simon, BME, IIT 2

Monolithic applications

Dr. Balázs Simon, BME, IIT 3

Monolithic applications

 Cost, time, and complexity of managing HW strongly
influences application development

 Before cloud systems, it was hard to dynamically assign
HW resources: the infrastructure was static
 DB servers, application servers, web servers, load-balancers,

caches

 Applications were designed for a fixed HW infrastructure

 Typically: three monolithic tiers
 DB + business logic + web

 Each tier scales independently
 each tier is a monolithic application on its own
 although they can contain multiple components
 interfaces only between tiers

Dr. Balázs Simon, BME, IIT 4

Web

Business
logic

DB

Computer/VM Computer/VM Computer/VM

Computer/VM Computer/VM

Computer/VM Computer/VM Computer/VM Computer/VM

Scaling applications with monolithic tiers

Dr. Balázs Simon, BME, IIT 5

Web

Business logic

DB Backup DBreplication

Web Web

Business logic Business logic Business logic

Load balancer + cache

Load balancer + cache

Cache

St
at

el
es

s
St

at
e

Monolithic applications

 Advantages:
 simpler to design
 there is a single product with a single version

 easier to maintain consistency between components

 faster call between components within a single tier

 Disadvantages:
 the whole application has to be developed and deployed in one piece
 the entire tier has to be retested and redeployed when something is

changed
 can be slow
 deploying a new version without downtime is a challenge

 tight coupling between components within a tier:
 components cannot be scaled independently, the whole tier has to be scaled
 harder to test individual components

 communication between tiers is slow
 caches are needed between them

Dr. Balázs Simon, BME, IIT 6

Microservices

Dr. Balázs Simon, BME, IIT 7

Application

Microservices

Dr. Balázs Simon, BME, IIT 8

Web

Business logic

DB

Monolithic Microservices

Idea: split monolithic applications into smaller components, which can be
developed, deployed and scaled independently from each other

Computer/VM Computer/VM Computer/VM

Load balancer

Application

Scaling:

Application built of microservices

 The application is composed of many small services

 Services are developed and tested independently by small
teams

 Services are deployed independently

 Services are versioned independently

 Services scale independently

 The entire application evolves as the sum of all services

Dr. Balázs Simon, BME, IIT 9

Application

Properties of microservices

 Each service deals only with one business functionality

 Services can be written in any programming language and can
use any framework

 Services run in their own containers deployed across a cluster
of machines

 Services can optionally have internal state

 Services interact with other microservices over well-defined
interfaces and protocols

 Services have unique names used to resolve their location

 Services and their internal states can be versioned

 Services remain consistent and available in the presence of
failures

 Services report health and diagnostics

Dr. Balázs Simon, BME, IIT 10

One business functionality

 Each service encapsulates a simple business functionality
 e.g. user management, accounting, shipping, etc.

 Development is driven more by business scenarios than
technology (unlike the tiered approach)

 The development team deals with the whole
implementation stack
 user-interface, persistent storage, communication

 teams are cross-functional

 A microservice is a product not a project
 the team is not disbanded when the service is completed

 the team maintains the service

Dr. Balázs Simon, BME, IIT 11

Any programming language and any framework

 Different tasks require different technologies
 maybe the performance is important: C++
 maybe the ease of managed development is important: C#, Java
 maybe the user experience is important: JavaScript
 etc.

 With microservices the different parts of the application can
be implemented with the appropriate technologies

 This eliminates any long-term commitment to a technology
stack: services can be rewritten easily with a new technology
stack without affecting other services

 However:
 different technologies require different runtime frameworks: each

service needs its own runtime environment
 the services have to communicate with each other through a

framework independent communication technology

Dr. Balázs Simon, BME, IIT 12

Containers

 Containers provide the runtime environment for
microservices
 the required frameworks and technologies specific to the

implementation of the given service

 A container can be tailored to provide only the required
libraries
 all the required libraries are included

 unnecessary libraries are not included

 Containers ensure that only the required amount of
resources are used by the process in which the service
runs

 Containers isolate services from each other

Dr. Balázs Simon, BME, IIT 13

Optional internal state

 Each microservice manages and stores its own state,
usually in its own database (SQL or NoSQL)

 Each service is responsible for scaling both code and state
together to meet the demands of the service

 The state of the application is distributed among multiple
services

 The states of different services have to be strictly
separated from each other
 don’t do joins between tables of different services
 don’t create dependencies at the storage layer
 otherwise, you can't scale individual components

 Downside: views and queries involving multiple services
have a huge communication overhead

Dr. Balázs Simon, BME, IIT 14

Communication with other microservices

 Services interact with other microservices over well-
defined interfaces and protocols
 just like SOA

 Communication can be any technology
 but usually it is REST

 messages are typically JSON or XML, but for efficiency they can
be binary (e.g. Protocol Buffers)

 Microservices require an interface description language
 so that clients can be implemented easily

 should be a strongly typed language
(e.g. Swagger, proto, WSDL, etc.)

 Communication has a huge overhead compared to in-
memory calls of monolithic applications

Dr. Balázs Simon, BME, IIT 15

Resolving microservices

 Microservices need to find other microservices
 physical addresses of other services shouldn’t be hardwired

 Microservices need addressable (logical) names
 independent from the infrastructure that they are running on

 Service deployment and discovery need to be in
interaction
 when a service is deployed: a new physical name is registered

for the logical name
 when a service is being discovered: the logical name is resolved

to a physical name

 A service registry is needed for:
 service discovery
 load balancing
 failover

Dr. Balázs Simon, BME, IIT 16

Versioning code

 Services evolve over time
 Usually this is solved by versioning
 But the preference in the microservices world is to use

versioning only as a last resort
 If there are multiple incompatible versions of the same service

used by multiple clients:
 developers have to maintain bug fixes in all supported versions
 old versions can be easily broken because of the shared code

pathways
 there is too much operational complexity: service management,

monitoring, support, discovery, testing, etc.

 The rule is: be liberal in what you accept and conservative in
what you send (Postel's Law)
 services should be backwards compatible with older versions

 Create a new version only if it is necessary to introduce a
breaking change in the public interface of the service

Dr. Balázs Simon, BME, IIT 17

Versioning internal state

 Services store their internal state in their own databases

 A change in the service may require updating the
database schema: the tables have to be upgraded to the
new schema

 This mandates a new version of the service:
 if a newer version of a microservice fails during upgrade, the

code and state need to be rolled back to an earlier version

 it is common to upgrade a microservice for a specific set of
customers to test new functionality before rolling it out more
widely

 Even if the public API doesn’t change but the internal state
representation does, it is a good idea to introduce a new
version of the service

Dr. Balázs Simon, BME, IIT 18

Consistency and availability in the presence of failures

 We need to detect when a microservice fails (a hard
problem on its own)

 We also need to restart the failed microservice
 restart happens often on another machine for availability

reasons
 the saved state of the failed service has to be restored

 Microservices have to be resilient:
 in code: when the service is restarting
 in data: consistency and no data loss

 A resilient microservice has to be able to decide whether:
 an upgrade failed
 it can continue with the new version
 it should roll back to the previous version
 enough machines are available to keep moving forward

Dr. Balázs Simon, BME, IIT 19

Report health and diagnostics

 A microservice must report its health and diagnostics
 operating the services is very difficult with no insight

 How to log health and diagnostic events must be agreed
upon by all teams
 a standard logging format is needed for all services

 Diagnostic events have to be correlated
 challenges: clock skews and determining event order across a

set of independent services

 Health is about the microservice reporting its current
state
 state of deployment
 state of an ongoing upgrade
 challenge: creating self-healing services

Dr. Balázs Simon, BME, IIT 20

Microservices

 Definition:
 The microservice architectural style is an approach to developing

a single application as a suite of small services, each running in
its own process and communicating with lightweight
mechanisms, often an HTTP resource API. These services are
built around business capabilities and independently
deployable by fully automated deployment machinery. There is
a bare minimum of centralized management of these services,
which may be written in different programming languages and
use different data storage technologies.

– James Lewis and Martin Fowler

 Microservices build a lightweight and fine-grained
Service-oriented architecture (SOA)

Dr. Balázs Simon, BME, IIT 21

Drawbacks and
challenges of
microservices

Dr. Balázs Simon, BME, IIT 22

Drawbacks of microservices

 Services form information barriers

 Microservices introduce additional complexity and new
problems to deal with:
 network latency, message formats, load balancing and fault

tolerance

 Inter-service calls over a network have a higher cost than
in-process calls within a monolithic service process:
 network latency and message processing time

 Moving responsibilities between services is more difficult:
 requires communication between different teams, rewriting the

functionality in another language or fitting it into a different
infrastructure

 Small services can lead to too many services
 internal modularization may lead to a simpler design

Dr. Balázs Simon, BME, IIT 23

Drawbacks of microservices

 Additional complexity of creating a distributed system
 developer tools/IDEs are oriented on building monolithic applications
 testing is more difficult
 developers must implement the inter-service communication

mechanism
 implementing use cases that span multiple services without using

distributed transactions is difficult
 implementing use cases that span multiple services requires careful

coordination between the teams

 Deployment complexity
 Operational complexity of managing a system comprised of

many different service types
 If there is a problem it is hard to see the exact cause and effect
 The complexity of a monolithic application is only shifted into

the network, but persists:
 You can move it about but it's still there!

— Robert Annett: Where is the complexity?

Dr. Balázs Simon, BME, IIT 24

Challenges of microservices

 When to use the microservice architecture?

 How to decompose the application into services?

 How to solve the problem of information barriers
hindering productivity?

 How to maintain data consistency?

 How to implement queries?

 How do services communicate with each other?

 How do services find each other?

 How to manage the dependency hell between services?

Dr. Balázs Simon, BME, IIT 25

Containers for
microservices

Dr. Balázs Simon, BME, IIT 26

Containers for microservices

 A container instance hosts one or more microservices
(typically only one)

 The container must provide the runtime environment and
all the libraries required by the microservice

 The application can be built from many microservices, and
each of them may require a different programming
language, runtime environment and a set of libraries

 Selecting the container technology depends on what kind
of runtime and libraries the services need

 Container types:
 virtual machines (e.g. VMWare)
 modular operating system (e.g. Docker)
 modular application server (e.g. Thorntail Swarm)

Dr. Balázs Simon, BME, IIT 27

Thorntail Swarm

 Modular application server developed by Red Hat

 Designed for packaging and running Java EE applications as
microservices

 Microservices can be packaged with just enough of the server
runtime

 Fractions (features):
 they are modules implementing microservice patterns and different parts of

Java EE
 only the required fractions have to be imported
 examples for fractions:

logging, JPA, REST, web, security, transactions, monitoring, Spring, ...

 Two kinds of runtime jars can be built:
 simple jar: contains only the application code, takes dependencies from the

local Maven repository
 über-jar: contains the application code along with all the necessary parts

(fractions and all their dependencies) of WildFly to support it

 Applications previously running on the WildFly Application Server
can be split into microservices which can then run in a Thorntail
Swarm

Dr. Balázs Simon, BME, IIT 28

Docker

 Can be used to host microservices or just to simply run
applications in an isolated environment

 Standard packaging format for containers

 Isolated containers are portable to any machine running
Docker

 Services and applications can be written in any
programming language

 Docker Compose defines an application model that
supports multiple Docker-packaged microservices

 Docker Swarm serves as a cluster manager

 Docker has a great tooling ecosystem

Dr. Balázs Simon, BME, IIT 29

Kubernetes

 Originally developed by Google

 Cluster management for Docker containers

 Open-source system for automating deployment,
operations, and scaling of containerized applications

 Containers that make up an application can be grouped
into logical units for easy management and discovery

 Kubernetes builds on Google’s experiences running large
scale services

Dr. Balázs Simon, BME, IIT 30

Docker

Dr. Balázs Simon, BME, IIT 31

Docker

 Docker:
 tool for deploying applications in a sandbox (called container)
 applications can be packaged with all their dependencies into a

standardized unit (called image)

 Containers are instances of images

 Difference compared to Virtual Machines:
 the guest and the host are both Linux
 the container runs natively on the host
 the container reuses the host operating system’s kernel and access to

hardware
 only the additional operating system libraries and 3rd party libraries

have to be added

 The host operating system can be:
 Linux, Mac
 Windows: lately, Docker uses the Windows Subsystem for Linux

Dr. Balázs Simon, BME, IIT 32

VMContainer

Docker vs. Virtual Machine

Dr. Balázs Simon, BME, IIT 33

Hardware

Host OS

Docker

Hardware

Hypervisor

Guest OS Guest OS

Bins/Libs Bins/LibsBins/Libs Bins/Libs

App A App B App A App B

Using Docker

Dr. Balázs Simon, BME, IIT 34

Internet

Docker Hub

image A

image B

Local Computer

Docker
Client

Docker Daemon

container A

image A

volume

container A

image A

network

run

pull

push

network volume

Docker concepts

 Image:
 container template

 delta of libraries and files compared to the Linux kernel

 Container:
 instance of an image

 instantiated by running the image of the application

 Network:
 LAN between containers

 Volume:
 file/folder on the host machine mapped into the container

 persists even if the container is deleted

Dr. Balázs Simon, BME, IIT 35

Docker concepts

 Docker Daemon:
 background service running on the host

 manages building, running and distributing Docker containers

 clients talk to this daemon process

 Docker Client:
 command line tool that allows the user to interact with the

daemon

 there are other forms of clients, e.g. Kinematic GUI.

 Docker Hub:
 registry of Docker images

 lists all available Docker images

 we can host our own Docker registries

Dr. Balázs Simon, BME, IIT 36

Docker image

 Image:
 container template
 delta of libraries and files compared to the Linux kernel
 has name + version

 version is optional, if missing, it means latest version

 Images on Docker Hub:
 busybox, ubuntu, mongo, postgres, mysql, node, python,

openjdk, wordpress, ...

 Commands:
 fetch the busybox image from a registry (e.g. Docker Hub):

 fetch Ubuntu version 12.04:

 list the downloaded images on our computer:

37

$ docker pull busybox

$ docker images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
busybox latest c51f86c28340 4 weeks ago 1.109 MB

$ docker pull ubuntu:12.04

Docker image

 Base vs. child images:
 Base image:

 no parent image, usually an OS image
 e.g. busybox, ubuntu, debian

 Child image:
 builds on base images and add additional functionality

 Official vs. user images:
 both can be base or child
 Official image:

 officially maintained and supported by the Docker team
 image names are simple names, e.g., busybox, ubuntu, mysql, python, ...

 User image:
 created and shared by users
 typically they build on base images and add additional functionality
 image names are formatted as: <username>/<image name>

Dr. Balázs Simon, BME, IIT 38

Docker container

 Container:
 instance of an image
 instantiated by running the image of the application

 Commands:
 run a container based on the busybox image:

 in case of busybox it just boots up and exits, but most containers don’t exit,
they keep running

 run a shell command in busybox:

 see running containers:

 see all containers (even recently exited ones):

39

$ docker run busybox

$ docker run busybox echo "hello from busybox"
hello from busybox

$ docker ls

$ docker ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS NAMES
305297d7a235 busybox "uptime" 11 minutes ago Exited (0) 11 minutes ago distracted_goldstine
ff0a5c3750b9 busybox "sh" 12 minutes ago Exited (0) 12 minutes ago elated_ramanujan

Docker container

 Commands:
 run container in interactive mode, i.e. allow running commands

inside the container:

 run a container, that does not stop, in detached mode:

 stop a running container using its name:

 stop and remove a container:

 run a container and remove it automatically after it stops:

Dr. Balázs Simon, BME, IIT 40

$ docker run -it busybox sh
/ # ls
bin dev etc home proc root sys tmp usr var
/ # uptime
05:45:21 up 5:58, 0 users, load average: 0.00, 0.01, 0.04

$ docker run -d mysql --name my_db

$ docker stop my_db

$ docker rm my_db

$ docker run --rm -d mysql --name my_db

Dockerfile

 You can create your own image using a Dockerfile

 Dockerfile:
 simple text-file

 automates the image creation process

 contains a list of commands

 the Docker client calls these commands while is creates an
image

 Building and publishing an image as a user named “soi”:
 build an image (the file Dockerfile is in the current directory):

 prepare the image by tagging it:

 publish the image to the repository (e.g. Docker Hub):

Dr. Balázs Simon, BME, IIT 41

$ docker image build -t my_image .

$ docker image tag my_image soi/my_image

$ docker image push soi/my_image

Dockerfile example

Dr. Balázs Simon, BME, IIT 42

FROM node:6-alpine

EXPOSE 3000

RUN apk add --update tini \
&& mkdir -p /usr/src/app

WORKDIR /usr/src/app

COPY . .

RUN npm install \
&& npm cache clean --force

CMD ["/sbin/tini", "--", "node", "./bin/www"]

create an image based on the
node image version 6-alpine
i.e. based on NodeJS

publish port

run these commands
inside the container

set the working directory inside the container

copy the contents of the current host directory
into the container’s current directory

run these commands
inside the container

run this command with arguments
when starting the container
i.e. start the NodeJS server

Docker networking

 You can create virtual networks between containers

 Docker network defaults:
 each container is connected to a private virtual network

"bridge"

 each virtual network routes through NAT firewall on host IP

 all containers on a virtual network can talk to each other

 Best practice is to create a new virtual network for each
application

 Commands:
 create a new virtual network:

 run a container, connect it to this network, and then publish its
internal port (3000) through the host’s network (8080):

Dr. Balázs Simon, BME, IIT 43

$ docker network create my_lan

$ docker container run --net my_lan -p 8080:3000 node

Docker volumes

 Containers are usually immutable and ephemeral
 containers cannot store data by themselves

 An external storage is needed on the host
 this will be preserved even if the container is deleted

 Two kinds of storage: volumes and bind mounts

 Volume:
 a file on the host
 can have a name
 commands:

 create a volume:
 run a container with an attached volume:

 Bind mount:
 maps a host file or directory to a container file or directory
 commands:

 run a container with bind mount on Linux:

 run a container with bind mound on Windows:

Dr. Balázs Simon, BME, IIT 44

$ docker volume create my_db

$ docker container run -v my_db:/var/lib/postgresql/data postgres

$ docker container run -v /home/soi/my_db:/var/lib/postgresql/data postgres

$ docker container run -v //c/Users/soi/my_db:/var/lib/postgresql/data postgres

Docker Compose

 Running commands one-by-one is OK for single containers

 But usually we need multiple containers
 from different images
 connected through different networks
 using different volumes

 We need a reproducible way to run and connect the containers

 Docker Compose can manage multiple containers through a
Compose file
 the compose file describes the architecture of the system

 Commands:
 create and start volumes, networks and containers:

 start containers:

 stop containers:

 stop and delete containers (but not volumes!):

Dr. Balázs Simon, BME, IIT 45

$ docker-compose up

$ docker-compose down

$ docker-compose start

$ docker-compose stop

Compose file example

46

version: "3"

services:
drupal:
image: drupal
ports:
- 8080:80

volumes:
- drupal-modules:/var/www/html/modules
- drupal-profiles:/var/www/html/profiles
- drupal-sites:/var/www/html/sites
- drupal-themes:/var/www/html/themes

postgres:
image: postgres:9.6
environment:
POSTGRES_PASSWORD: mypass

volumes:
- drupal-data:/var/lib/postgresql/data

volumes:
drupal-data:
drupal-modules:
drupal-profiles:
drupal-sites:
drupal-themes:

create volumes

compose file version

containers

from the latest drupal image

from the postgres 9.6 image

publish the container’s port 80 through the host as 8080
mapping volumes to the container’s internal folders

environment variables

no need to publish ports
for postgres, since the two
containers see each other
through the default virtual
network

container name, and its DNS name through the virtual network

Docker Swarm

 A clustering solution built inside Docker

 Not enabled by default
 if enabled, the following commands are available:

 Can store and provide secrets for containers:
 passwords and private keys stored through logical names
 actual value can be different in production and in development

 Provides:
 advanced routing
 production grade compose (instead of Docker Compose)
 rolling update of containers with health-check and rollback

Dr. Balázs Simon, BME, IIT 47

$ docker swarm
$ docker node
$ docker service
$ docker stack
$ docker secret

Docker Logs

 Containers dump logs
 the OS running inside

 the servers running inside

 etc.

 Useful for troubleshooting

 Commands:
 see logs:

 see logs and follow them:

Dr. Balázs Simon, BME, IIT 48

$ docker logs my_container

$ docker logs -f my_container

Summary

Dr. Balázs Simon, BME, IIT 49

Summary

 Microservices:
 application is split into multiple small services

 services can be written in any programming language

 services run in their own containers

 services form information barriers

 Docker:
 tool for deploying applications in a sandbox (called container)

 applications can be packaged with all their dependencies into a
standardized unit (called image)

 networks

 volumes

 compose

 swarm

Dr. Balázs Simon, BME, IIT 50

