
OSGi
Szolgáltatásorientált rendszerintegráció

Service-Oriented System Integration

Dr. Balázs Simon

BME, IIT



Outline

 Problems with Java modularization

 OSGi overview

 OSGi bundles

 OSGi implementations

 OSGi alternatives

Dr. Balázs Simon, BME, IIT 2



Problems with Java 
modularization

Dr. Balázs Simon, BME, IIT 3



Java class loading

 Class loaders are descendants of java.lang.ClassLoader

 Default behavior when a class has to be loaded:
 The class loader asks its parent class loader, whether the class is 

already loaded

 If yes: the class is not loaded again

 If no: the parent class loader asks its own parent, etc.

 If none of the ancestor class loaders knows about the class, only 
then will the class be loaded by the original class loader

 We can write custom class loaders

 Unique identifier of a class: its name + its class loader
 If two different class loaders load the same class, they are 

different classes! (ClassCastException, LinkageError)

Dr. Balázs Simon, BME, IIT 4



...

...

Standard Java class loading

Dr. Balázs Simon, BME, IIT 5

java -cp log4j.jar;. sample.Hello

ext.jar

rt.jar
Bootstrap 

ClassLoader

Extension 
ClassLoader

Application 
ClassLoader

log4j.jar

load

delegate

delegate

load

load



Application server class loading

Dr. Balázs Simon, BME, IIT 6

Bootstrap 
ClassLoader

Extension 
ClassLoader

Application 
ClassLoader

EAR ClassLoader

EJB ClassLoader WAR ClassLoader

EAR ClassLoader

EJB ClassLoader WAR ClassLoader



Modularity

 Modularity:
 encapsulation and information hiding

 Modularity in Java:
 visibility only for classes an methods

 no higher level (package, jar) modularity

 Problems with jar files:
 only meaningful at build-time and deploy-time

 no standard metadata for dependencies

 no standard metadata for versioning

 no mechanism for information hiding

Dr. Balázs Simon, BME, IIT 7



Conflicting classes

 Since otherlib.jar is the first in the 
classpath: always this Hello class will 
be loaded

 The Hello class in mylib.jar is never 
used

 Any change in our class is ineffective

Dr. Balázs Simon, BME, IIT 8

otherlib.jar

sample.Hello

mylib.jar

sample.Hello

java -cp otherlib.jar;mylib.jar;. sample.Hello



Conflicting classes

 Since otherlib.jar is the first in the 
classpath: always this Util class will 
be loaded

 The Util class in mylib.jar is never 
used

 Even though it is in our own jar!

 Possible solution: always use unique 
hierarchical package names!

 But: what if we have different 
versions of the same library?

Dr. Balázs Simon, BME, IIT 9

otherlib.jar

sample.Util

mylib.jar

sample.Hello

java -cp otherlib.jar;mylib.jar;. sample.Hello

sample.Util



Lack of explicit dependencies

 Some jars are standalone
 they do not depend on other libraries

 But most jar files use other libraries
 How do we know which libraries are required?

 Familiar exception at runtime: ClassNotFoundException

 Class-Path entry in the manifest:
 only adds other jars to the classpath

 if the jar is not found: ClassNotFoundException

 How to collect all the required jars?
 Maven can solve this

 But Maven can only load a single version of a dependency!

Dr. Balázs Simon, BME, IIT 10



Lack of version information

 Problem:
 xlib is only compatible with 1.x versions

 ylib is only compatible with 2.x versions

 Which commonlib version to load?

 We cannot load both:
 The first one in the classpath will hide the classes of the other version!

 This is a very common problem in Java
 especially in application servers

Dr. Balázs Simon, BME, IIT 11

commonlib-1.3.jar

myapp.jar

commonlib-2.1.jarylib.jar

xlib.jar



Application server class loading

Dr. Balázs Simon, BME, IIT 12

Bootstrap 
ClassLoader

Extension 
ClassLoader

Application 
ClassLoader

EAR ClassLoader

EJB ClassLoader WAR ClassLoader

EAR ClassLoader

EJB ClassLoader WAR ClassLoader



EAR silos

 In order to avoid version conflicts:
 the required libraries must be included in the EAR/WAR lib 

folder

 these EAR/WAR files become very heavyweight

 loading these EARs/WARs is slow and memory consuming

 If a library can be used by all applications:
 it should be pushed up in the class loader hierarchy tree

 but if it is loaded by the server at startup, it cannot be unloaded 
at will, as libraries in EAR/WAR files

 and these classes always take precedence over libraries included 
in the EAR/WAR files

Dr. Balázs Simon, BME, IIT 13



Lack of information hiding

 Java member visibilities:
 public: visible to everybody
 protected: visible to subclasses and other classes in the same 

package
 private: visible only within the class
 no visibility (default): visible within the same package

 Class visibilities: only public and default

 Problem:
 visibilities are defined for packages
 but deployment units are jar files, not packages
 classes are made public so that other packages within the same 

jar can see them, but this way other jars will be able to see 
them, too

 packages can be split between jars

Dr. Balázs Simon, BME, IIT 14



OSGi

Dr. Balázs Simon, BME, IIT 15



OSGi

 Originally: Open Service Gateway initiative
 now much more than just a gateway specification

 General purpose framework

 Dynamic module system for Java

 Bundle (a module):
 a simple jar file with some additional properties in the 

MANIFEST.MF file

 semantic version number

 exports packages

 imports packages

 Bundles can be loaded and unloaded dynamically

Dr. Balázs Simon, BME, IIT 16



OSGi layers

Dr. Balázs Simon, BME, IIT 17

Operating system

Execution environment

Module

Life cycle

Service

Se
cu

ri
ty

Bundles



OSGi layers

 Service layer
 communication model for bundles

 decouples service implementation from its interface

 it is a kind of dependency injection

 Life cycle layer
 provides an API to manage bundles

 installing, updating and uninstalling bundles

 starting and stopping bundles

Dr. Balázs Simon, BME, IIT 18



OSGi layers

 Module layer
 strict rules for sharing Java packages between bundles

 hiding packages from other bundles

 Security layer
 based on Java 2 security

 defines a secure packaging format

 runtime interaction with the Java 2 security layer

Dr. Balázs Simon, BME, IIT 19



OSGi bundle

 Unit of modularity

 Has a life cycle

 Has a strong semantic version number

 Provides services

 Uses other services

 OSGi is like a SOA inside a JVM
 dynamically loading and unloading bundles

 service registry for publishing and finding services

Dr. Balázs Simon, BME, IIT 20



Advantages of OSGi

 Enforced modularity
 application structure is clearer

 Declarative dependencies
 simplified building and administration

 Semantic version information
 libraries can be shared without risk

 libraries can be updated with reduced risk

 Per-module hot updates
 parts of an application can be replaced without any downtime

Dr. Balázs Simon, BME, IIT 21



OSGi bundles

Dr. Balázs Simon, BME, IIT 22



OSGi bundle

 A simple jar file
 packages, classes and other resources

 With additional entries in the
META-INF/MANIFEST.MF
 symbolic name

 semantic version number

 exported packages (with version number)

 imported packages (with version number)

 and other entries…

Dr. Balázs Simon, BME, IIT 23



Understanding OSGi bundles

 Java (the JVM) does not understand OSGi entries in the 
manifest file

 Only the OSGi framework can load and understand bundle 
manifests
 the OSGi framework is the system bundle which loads other 

bundles

 OSGi is like a container in which the bundles can run (analogy: 
EJB container)

 OSGi does not work out of the box in any environment:
 the application server itself has to run in an OSGi environment: 

the jars of the server have to be OSGi bundles, too

 or somehow the application must deploy an OSGi container with 
itself

Dr. Balázs Simon, BME, IIT 24



Bundle manifest example

Dr. Balázs Simon, BME, IIT 25

Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Bundle-SymbolicName: org.apache.cxf.cxf-api
Bundle-Version: 2.7.13
Bundle-Name: Apache CXF API
Bundle-Vendor: The Apache Software Foundation
Export-Package: org.apache.cxf;version="2.7.13",org.apache.cxf.annotat
ions;version="2.7.13"
Import-Package: org.slf4j;resolution:=optional;version="[1.5,2)",org.s
pringframework.beans;resolution:=optional;version="[2.5,4)",javax.xml
.bind;version="[0.0,3)"

Java manifest version

OSGi manifest version

Bundle unique identity

Imported packages with version numbers

Exported packages with version numbers



OSGi version numbers

 For publishing the bundle or package version

 Semantic version number:
 major, minor, micro: integers

 qualifier: numbers and letters

 examples: 1.0.0, 2.1.7, 1.3.4.build_20140420

 Change in the version number:
 major: breaking API change

 minor: compatible API change

 micro: no API change, only bugfixes

 qualifier: no semantics

Dr. Balázs Simon, BME, IIT 26

<major>.<minor>.<micro>.<qualifier>



OSGi version ranges

 For referencing a bundle or package version

 A version range:
 [1.0.0,2.0.0) means at least 1.0.0 and up to but not including 2.0.0
 square bracket: inclusive
 round bracket: exclusive

 A single version number:
 means that exact version or any above
 e.g. 2.1.3 means “2.1.3 or above”

 No version number:
 means 0.0.0 or above

 Import:
 if there are multiple matches, the highest version wins
 if there are still multiple matches: the framework chooses arbitrarily 

the bundle with the lowest ID

Dr. Balázs Simon, BME, IIT 27



OSGi runtime

 The OSGi framework is the system bundle

 There is usually an OSGi console, where the bundles can 
be managed
 the framework can install, uninstall, update, start and stop 

bundles
 each bundle is assigned an ID

 The bundles can also be assigned a start level (non-
negative integer)
 a bundle is started when the OSGi framework reaches its start 

level
 the framework makes sure that bundles with lower start level 

are already started
 the start level is only a runtime management concept, it cannot 

be configured in the manifest

Dr. Balázs Simon, BME, IIT 28



Bundle lifecycle

Dr. Balázs Simon, BME, IIT 29

Installed

Resolved

Uninstalled

Starting

Active

Stopping

install

resolve

uninstall

uninstall

refresh/
update

start

stop

refresh/
update

implicit/automatic transition

explicit transition



Bundle activator

 Activator class:
 called when the bundle is started or stopped

 receives a BundleContext object
 can be used to interact with the OSGi framework

 can register services

 can look up services

 Registering the activator in the manifest file:
 Bundle-Activator entry

Dr. Balázs Simon, BME, IIT 30



Bundle activator class

Dr. Balázs Simon, BME, IIT 31

package hello;
import org.osgi.framework.BundleActivator;
import org.osgi.framework.BundleContext;

public class Activator implements BundleActivator {
private static BundleContext context;

static BundleContext getContext() {
return context;

}

public void start(BundleContext bundleContext) throws Exception {
Activator.context = bundleContext;
System.out.println("Hello, World!") ;

}

public void stop(BundleContext bundleContext) throws Exception {
System.out.println("Goodbye, World!") ;
Activator.context = null;

}
}



Bundle manifest

Dr. Balázs Simon, BME, IIT 32

Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Bundle-Name: Hello
Bundle-SymbolicName: hello
Bundle-Version: 1.0.0.qualifier
Bundle-Activator: hello.Activator
Require-Bundle: org.eclipse.core.runtime
Bundle-RequiredExecutionEnvironment: JavaSE-1.7
Bundle-ActivationPolicy: lazy

Activator class



BundleContext

 Used for interaction with the OSGi framework:
 look up system-wide configuration properties

 find another installed bundle by its ID

 get a list of all installed bundles

 manipulate other bundles programmatically
 start, stop, update, uninstall, ...

 install new bundles programmatically

 register and unregister bundle listeners
 to be notified about bundle changes in the framework

 register and unregister service listeners
 to be notified about service changes in the framework

 register and unregister framework listeners
 to be notified about general events in the framework

Dr. Balázs Simon, BME, IIT 33



Bundle dependencies

Dr. Balázs Simon, BME, IIT 34

mylib-1.0.0.jar

sample.lib.*

sample.lib.impl.*

myapp-1.0.0.jar

sample.app.*
uses

Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Bundle-SymbolicName: mylib
Bundle-Version: 1.0.0.qualifier
Export-Package: sample.lib;vers
ion="1.0.0"

Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Bundle-SymbolicName: myapp
Bundle-Version: 1.0.0.qualifier
Import-Package: sample.lib;vers
ion="1.0.0"

uses

(There also exists a Require-Bundle entry, but its use is not recommended.)

If at least one of the imports cannot be resolved, the bundle 
cannot enter the resolved state and cannot be started!



Class loading in OSGi

 Every bundle has its own class 
loader

 The OSGi framework itself is the 
system bundle
 it loads other bundles
 exports JRE packages (e.g. java.*, 

javax.*)
 but forwards class loading to the 

bootstrap class loader
 this way the environment is 

transparent for other bundles
 the list can be extended for future 

Java versions

 In OSGi the class loaders build a 
graph, not a tree

Dr. Balázs Simon, BME, IIT 35

For non-JRE packages:

Is the package imported?
-> load by the imported bundle

Are there required bundles?
-> load by the required bundle

Is it on the current bundle’s
classpath (inside the bundle)?
-> load from the current bundle

Fragment import?

Dynamic import?

Fail



Services

 OSGi is like a SOA inside a JVM

 Services can be published
 a service has an interface

 a service can have properties

 Services can be looked up
 by its interface

 can be filtered by its properties

 kind of a dynamic dependency injection
 services can be unloaded and reloaded

Dr. Balázs Simon, BME, IIT 36



Service: simple Java

Dr. Balázs Simon, BME, IIT 37

public interface ICalculator {
double add(double left, double right);

}

public class Calculator implements ICalculator {
@Override
public double add(double left, double right) {

return left+right;
}

}



Registering a service

Dr. Balázs Simon, BME, IIT 38

package hello;

import org.osgi.framework.BundleActivator;
import org.osgi.framework.BundleContext;

public class Activator implements BundleActivator {
@Override
public void start(BundleContext context) throws Exception {
ICalculator calc = new Calculator();
context.registerService(ICalculator.class, calc, null);

}

@Override
public void stop(BundleContext context) throws Exception {
}

}

Interface Service object Properties

Unregistration is not required:
performed automatically when the bundle is stopped



Looking up a service

Dr. Balázs Simon, BME, IIT 39

public void calculate() {
ServiceReference<ICalculator> ref = 

context.getServiceReference(ICalculator.class);
if (ref != null) {

ICalculator calc = context.getService(ref);
if (calc != null) {
try {
double result = calc.add(3.4, 7.8);
System.out.println(result);

} finally {
context.ungetService(ref);

}
}

}
}

BundleContext

start using the service

stop using the service



Why two-stage service access?

 A ServiceReference object is a lightweight object
 it can be used to query the properties of the service

 When the service is started to be used, it requires 
additional administration by the OSGi framework

 There are other ways of obtaining services:
 ServiceTracker, ServiceListener

 Declarative Services: configuration files for dependency 
injection

Dr. Balázs Simon, BME, IIT 40



OSGi implementations

Dr. Balázs Simon, BME, IIT 41



Equinox

 Reference implementation of OSGi

 Eclipse is based on Equinox

 IBM WebSphere Application Server is also using Equinox

 Eclipse Public License (EPL)

Dr. Balázs Simon, BME, IIT 42



Apache Felix

 Community implementation from Apache

 Designed for compactness
 to be able to used in embedded environments

 Dependency injection: Apache Blueprint
 similar to Spring

 XML and annotation support

 Oracle WebLogic uses Apache Felix

 GlassFish also uses Apache Felix

 Apache License

Dr. Balázs Simon, BME, IIT 43



Knopflerfish

 Popular and mature implementation

 Developed and maintained by 
Makewave AB

 Has a commercially supported edition: Knopflerfish Pro

 BSD license

Dr. Balázs Simon, BME, IIT 44



OSGi alternatives

Dr. Balázs Simon, BME, IIT 45



Maven

 Jars are handled as modules
 versioning

 declarative dependency

 Maven automatically downloads and uses the appropriate 
version of all dependencies
 building Java applications is much easier than before Maven

 Maven is a build system, not a runtime
 it cannot solve the problems of the flat class path and using 

multiple versions of the same jar at runtime

 OSGi systems can be built by Maven
 Apache Felix Maven plugin: maven-bundle-plugin

 Bnd tool plugin: bnd-maven-plugin

Dr. Balázs Simon, BME, IIT 46



Project Jigsaw

 Java Platform Module System

 Planned for Java 9

 Goal: modularization of the JRE and JDK

 Declarative dependencies between modules

 Only exported packages will be visible

 Packages can be be split between modules

 Internal com.sun.* packages will be hidden

 No multiple versions of the same module at the same time
 this is bad: the jar-hell problem will be transformed to module-hell

 Jigsaw is not recommended for application development, it is 
rather for splitting the JRE and JDK into modules

Dr. Balázs Simon, BME, IIT 47


