
Maven
Szolgáltatásorientált rendszerintegráció

Service-Oriented System Integration

Dr. Balázs Simon

BME, IIT



Maven

 Build tool and dependency management system

 Maven configuration is in XML: pom.xml
 declarative description of version information, dependencies and build steps

 Maven promotes convention over configuration:
 consistent project structure
 consistent build model

 Maven is extensible with plugins
 e.g. generating files, running special tests, creating special artifacts, etc.

 Maven build artifact:
 usually a JAR file
 three properties:

 group id: identifier of the organization (usually the DNS name in reverse order)
 artifact id: identifier of the artifact within the group
 version: semantic version number

 Maven stores build artifacts and their dependency information in 
repositories

Dr. Balázs Simon, BME, IIT 2



Maven repository

 Repositories hold build artifacts (usually JAR files) and their 
dependency information

 Two types of repositories:
 local: local computer (~/.m2/ folder)

 it is a cache of remote downloads
 also contains own build artifacts not yet released

 remote: remote server
 provides build artifacts for downloading

 Remote repository:
 public: available for everyone
 internal: internal use for a company to store private build artifacts for sharing 

between teams and for releases

 Remote repositories must be configured for maven: this is where it 
will look for build artifacts

 Maven central repository: http://central.maven.org/maven2/
 special public repository
 contains the most commonly used jars and all their dependencies
 all well known open-source jars are in there (Apache, RedHat, ...)

Dr. Balázs Simon, BME, IIT 3



Company’s intranet

Internet

Maven repositories

Dr. Balázs Simon, BME, IIT 4

Developer’s
computer

~/.m2/

Developer’s
computer

~/.m2/

Developer’s
computer

~/.m2/

Internal
maven

repository

Public
maven

repository

Individual 
developer’s
computer

~/.m2/



Maven project structure

 Maven promotes convention over configuration:
 fix project structure

 (can be overridden if needed, but it is rarely done)

Dr. Balázs Simon, BME, IIT 5

Standalone application: Web application:

project root

src

target

main

java

resources

test

java

resources

project root

src

target

main

java

resources

test

java

resources

webapp

Test files

Java sources

Non-Java files

Created during build
pom.xml

pom.xml



Maven archetypes

 Maven can generate projects with default contents

 Maven archetypes are templates for these projects
 e.g. standalone application, web application, etc.

Dr. Balázs Simon, BME, IIT 6

Web application:

Standalone application:

mvn archetype:create
-DgroupId=[your project's group id]
-DartifactId=[your project's artifact id]

mvn archetype:create
-DgroupId=[your project's group id]
-DartifactId=[your project's artifact id]
-DarchetypeArtifactId=maven-archetype-webapp

And there are a lot of other archetypes…
You can even create your own.



Maven build steps

 Maven has a predefined set of steps in the build process
 can be customized, if needed

 The build process is incremental: only the changed parts are rebuilt
 Do not call clean everytime, otherwise the build process will take very long!

Dr. Balázs Simon, BME, IIT 7

validate

compile

test

package

verify

install

deploy

Build lifecycle: Clean lifecycle:

clean

Example commands:

mvn clean
mvn package
mvn clean deploy



Maven example: pom.xml

Dr. Balázs Simon, BME, IIT 8

<?xml version="1.0" encoding="utf-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

<groupId>com.companyname.project-group</groupId>
<artifactId>project</artifactId>
<version>1.0</version>

</project>

Group identifier

Artifact identifierVersion

Our project’s 
identifier

project-1.0



Maven version numbers

 Semantic version numbers: X.Y.Z-Q-W
 X: major (number)

 incremented on incompatible API changes

 Y: minor (number)
 incremented on backwards compatible API changes

 Z: patch (number, optional)
 incremented on backwards compatible bug fixes, no API changes

 Q: qualifier (string, optional)
 e.g. alpha, beta, snapshot, etc.

 W: build (number, optional)

 Examples:
 1.2, 2.0, 2.1.1, 3.2.4-SNAPSHOT, 5.1.2-alpha-4

Dr. Balázs Simon, BME, IIT 9



Maven dependencies

Dr. Balázs Simon, BME, IIT 10

<?xml version="1.0" encoding="utf-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

<groupId>com.companyname.project-group</groupId>
<artifactId>project</artifactId>
<version>1.0</version>

<dependencies>
<dependency>

<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.8.2</version>
<scope>test</scope>

</dependency>
</dependencies>

</project>

Dependency identifier
(transitive dependencies will be
collected automatically)

Scope of the dependency

project-1.0

junit-4.8.2



Maven dependencies

 Dependencies define the required build artifacts (JARs)

 Dependency: group id + artifact id + version number reference
 version number reference: exact number or range
 examples:

 1.3: generally means 1.3 or later, i.e. [1.3,)
 [1.0]: exactly 1.0
 [1.2,1.3]: 1.2 <= x <= 1.3
 [1.0,2.0): 1.0 <= x < 2.0
 [1.5,): x >= 1.5

 A dependency can have an optional scope (compile is the default):
 compile: required in all build phases, also propagated to dependent projects
 provided: required only in the compilation and test phase, at runtime it is 

provided by the environment (e.g. JDK, web server, etc.)
 runtime: not required for compilation, but it is for execution
 test: only required for the test compilation and test execution phases
 system: similar to provided, but we have to specify the path of the JAR 

explicitly for the local system (at runtime it will be provided by the 
environment)

 import: use dependencies from another pom.xml

Dr. Balázs Simon, BME, IIT 11



Maven dependency resolution

 Maven builds a tree from the dependencies and from all their 
transitive dependencies

 But Maven cannot use multiple versions of the same JAR at the 
same time

 It has to select a specific version:
 based on the version number ranges
 based on compatibility (minor, patch)
 based on the distance from the

root of the tree
 based on which comes first

 The dependency resolution algorithm is complex, but Maven 
will try its best

 Maven will report conflicts if it cannot perform the resolution 
correctly (e.g. version ranges don’t overlap)
 solution: dependencyManagement section in the POM

Dr. Balázs Simon, BME, IIT 12

POM

commons-
logging 1.1

log4j-1.2.13

log4j-1.2.12 servlet-2.3



Maven dependency management

 There is a dependencyManagement section in the POM

 We can specify the exact artifact version we want to use 
for the whole project
 uses exact versions

 overrides transitive dependencies

 can be used for dependency conflict resolution

 It can also be used in a hierarchical Maven project to 
centralize dependency information for child projects
 simpler to define them in one common POM than to repeat 

them in all child POMs

Dr. Balázs Simon, BME, IIT 13



Maven dependency management example

14

<?xml version="1.0" encoding="utf-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

<groupId>com.companyname.project-group</groupId>
<artifactId>project</artifactId>
<version>1.0</version>

<dependencyManagement>
<dependencies>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.8.2</version>
<scope>test</scope>

</dependency>
</dependencies>

</dependencyManagement>
<dependencies>
<!-- ... -->

</dependencies>
</project>

project-1.0

junit-4.8.2

Dependency management: 
Exact dependencies

Other dependencies



Maven project hierarchies

 Maven can also handle project hierarchies

 The root project references the children as modules

 The child projects reference the parent project

 Maven commands executed from the root will be 
also executed on the children
 e.g. mvn clean, mvn test, etc.

 Children will inherit the root’s configurations and 
dependencies

15

root-project

project1

project2

pom.xml

pom.xml

pom.xml

pom.xml
<project>

<modelVersion>4.0.0</modelVersion>

<groupId>com.mycompany.app</groupId>
<artifactId>root-project</artifactId>
<version>1.0</version>
<packaging>pom</packaging>

<modules>
<module>project1</module>
<module>project2</module>

</modules>
</project>

pom.xml
<project>

<parent>
<groupId>com.mycompany.app</groupId>
<artifactId>root-project</artifactId>
<version>1.0</version>

</parent>
<modelVersion>4.0.0</modelVersion>
<artifactId>project1</artifactId>

</project>

Parent of other Maven projects

Group id and version number are 
inherited from the parent



Properties of Maven

 Advantages:
 consistency

 new team members know immediately everything
 clear convention for the project structure
 clear convention for the build steps

 well established, well supported
 easy to find solutions for problems on the net

 declarative dependencies are easy to write and maintain
 Maven resolves transitive dependencies automatically

 great IDE support for Eclipse, IntelliJ

 Disadvantages:
 too rigid: hard to deviate from the convention

 but it’s usually not worth it: not following the convention is bad practice, new team 
members will have a hard time learning things

 can be slow
 usually when checking and downloading dependencies: as if it is downloading the 

whole internet
 can be resolved:

 keep a local copy of the dependencies once they are downloaded, and use offline mode
 use parallel builds

Dr. Balázs Simon, BME, IIT 16


