
Node.js
Szolgáltatásorientált rendszerintegráció

Service-Oriented System Integration

Dr. Balázs Simon

BME, IIT

Outline

 Conventional web servers before Node.js

 Node.js

 Node package manager (NPM)

 Popular Node.js modules

 TypeScript

Dr. Balázs Simon, BME, IIT 2

Conventional web
servers before Node.js

Conventional web servers

Dr. Balázs Simon, BME, IIT 4

Web server

Internet queue

thread #1

thread #2

thread #3

thread #n

DB

w
ai

ti
n

g.
..

Conventional web servers

 Multiple requests come in from clients
 The requests are processed by multiple threads
 Each thread serves a single request
 Each thread blocks for IO operations:

 deserializing request
 accessing the database
 serializing response

 CPU may be idle if every thread waits for IO to complete
 Request in the queue are not served until a thread becomes

free
 Accessing a common resource from multiple threads requires

synchronization: complex multi-threaded programming model
 Server-side programming language (Java, C#, PHP, etc.) is

usually different from the client-side programming language
(JavaScript): no code-sharing between the two sides

Dr. Balázs Simon, BME, IIT 5

Node.js

Dr. Balázs Simon, BME, IIT 6

Node.js

 Node.js is a high-performance framework for writing
server side applications in JavaScript

 Runs on V8 virtual machine
 Google Chrome’s JavaScript engine written in C++

 Very fast!

 Open-source: runs in Linux and Windows

 Optimized for high concurrent environments

 Easily scalable

 Programming model: callbacks
 a callback function is called when a new client request arrives

 a callback function is called when an IO operation completes

Dr. Balázs Simon, BME, IIT 7

Node.js server

Node.js server

Dr. Balázs Simon, BME, IIT 8

Internet queue DBSingle thread

when the IO
result is ready

single event

as
yn

c

event
loop

Node.js

 Simple and lightweight server
 Event-driven, non-blocking IO model

 (see: Reactor and Proactor concurrency patterns)

 Client requests and completions of IO operations generate
events, which are added to the event queue

 A single thread processes events in an event loop
 IO operations are executed asynchronously, the single thread

never blocks waiting for the IO operation to complete
 Node.js applications: a bunch of event handler (callback)

functions written in JavaScript
 Node.js is server side, so there is no HTML DOM!
 Since there is only a single thread: no need for complex multi-

threaded constructs (locking, signaling between threads, etc.)
 Easy to scale: run as many instances as you like

Dr. Balázs Simon, BME, IIT 9

Example: hello world web server

Dr. Balázs Simon, BME, IIT 10

var http = require('http');

var server = http.createServer(
function (req, res) {

res.writeHead(200, {'Content-Type': 'text/plain'});
res.end('Hello World\n');

});

server.listen(5000, "127.0.0.1");

Use the HTTP module

Callback for handling
client requests

Write response

Start the server at 127.0.0.1:5000

That’s all: a complete server application in 3 lines!

Callback example: handling REST request & DB query

Dr. Balázs Simon, BME, IIT 11

var express = require('express');
var router = express.Router();

/* Partial update */
router.post('/:id', function (req, res) {
let query = { _id: req.params.id };
News.findByIdAndUpdate(query, { $set: req.body }, {new: true},
(err, news)=>{
if (err){

res.json({info: 'error during partial update', error: err});
}
res.json({info: 'updated partially successfully', data: news});

});
});

Callback function for POST request

POST with ID

Callback lambda function:
executed when the DB query completes

Executing DB query

Node.js modules

 Node.js provides only the core server functionality

 Applications written for Node.js rely on modules
 in the previous examples: http, express

 Modules make application development easier

 There are lot’s of modules
 often it is hard to choose which modules to use

 there are multiple modules that can solve the same task

 modules in the Node.js world spawn and evolve very fast, it is
very hard to keep up with them

 Modules have versions and can depend on other modules

 We need a build management system like Maven!
 it is called: Node package manager (NPM)

Dr. Balázs Simon, BME, IIT 12

Advantages of Node.js

 Node.js is good for:
 single-page applications (e.g. gmail)

 interactive web applications (e.g. chat server)

 streaming-based real-time services (e.g. Netflix)

 static web server

 Can handle many requests without dealing with
concurrency between multiple threads

 Code can be shared between the server-side and the
client-side

 Node.js is great for quick prototyping and agility

Dr. Balázs Simon, BME, IIT 13

Disadvantages of Node.js

 Dynamic JavaScript language with no type-checking
 Use the more and more popular TypeScript language instead:

 a statically-typed programming language developed by Microsoft
 backwards-compatible with JavaScript
 it is transformed (compiled) into JavaScript, so you can immediately see the

corresponding JavaScript code

 TypeScript is much more suitable for large-scale projects than plain
JavaScript

 Node.js comes with callback hell: very hard to debug

 The Node.js ecosystem of modules evolves very fast:
 it is very hard to keep up
 lot’s of modules are untested and not stable

 although there are high quality and stable modules, too

 Don’t use Node.js for CPU intensive tasks (e.g. finding large
prime numbers), since these occupy the single event-
processing thread!

Dr. Balázs Simon, BME, IIT 14

Node package manager
(NPM)

Dr. Balázs Simon, BME, IIT 15

Node package manager (NPM)

 NPM is the package and build manager for Node.js
 (like Maven is for Java)

 Handles modules with versions
 even different versions of the same module can be loaded at

runtime

 Handles dependencies between modules

 Default repository for modules: https://www.npmjs.com/
 there are other repositories, too (e.g. github)

 Configuration file: package.json
 has the same goal as the Maven POM file, but is written in JSON

 Modules can provide two kind of things:
 a programming library for your application
 commands in the shell to manage your application

Dr. Balázs Simon, BME, IIT 16

https://www.npmjs.com/

Installing modules locally

 If you want to use a module as a library, it needs to be
installed locally:

 Typically this is the case

 Local installation creates a folder in the current directory
called node_modules with the following structure:

 Then the module can be used from a Node.js application:

Dr. Balázs Simon, BME, IIT 17

npm install <module_name>

.

node_modules

<module_name>

var <module_name> = require('<module_name>');

.bin
Commands provided by the module

JavaScript library provided by the module

Installing modules globally

 If you need the commands provided by the module to be accessible
anywhere, it needs to be installed globally:

 Global installation creates the following directory structure in the
<prefix> folder:

 The <prefix> is usually:
 On Windows: C:\Users\{username}\AppData\Roaming\npm
 On Unix: /usr/local

 The commands are also available in the PATH

 But global modules cannot be used as libraries in an application

Dr. Balázs Simon, BME, IIT 18

npm install --global <module_name>

<prefix>

lib

node_modules

bin

<module_name>

Commands provided by global modules

Files belonging to the module

npm install -g <module_name>or

Installing modules locally and globally

 Sometimes you need the module both as a library and as
commands (e.g. express)

 Then it is recommended to install it locally and globally

Dr. Balázs Simon, BME, IIT 19

Using the package.json file

 It is strongly recommended to use a package.json file to
track your locally installed dependencies
 this makes it possible to create portable builds

 The recommended way of creating a Node.js application:
 1. create a new folder for your application

 2. go into the folder, and issue the following command:
npm init

 3. install your local dependencies with one of the following
commands to save them in the package.json file:
npm install --save <module_name>

npm install --save-dev <module_name>

 Restoring all the dependencies on another computer:
npm install

20

this will create the package.json file

for normal runtime dependencies

for development dependencies (e.g. for testing)

Running a Node.js application

 The application can be started with:

Dr. Balázs Simon, BME, IIT 21

npm start

Popular Node.js modules

Dr. Balázs Simon, BME, IIT 22

Popular Node.js modules

 Utility modules which provide useful commands
(should be installed globally):
 express
 bower
 typescript
 typings
 ...

 Runtime modules which provide useful libraries
(should be installed locally):
 express
 socket.io
 mongoose
 redis
 forever
 angular
 react
 ...

Dr. Balázs Simon, BME, IIT 23

express

 Express is a minimal and flexible Node.js web application
framework

 Provides a robust set of features for web and mobile
applications

 Provides REST operations

Dr. Balázs Simon, BME, IIT 24

npm install --save express

Hello world example with express

Dr. Balázs Simon, BME, IIT 25

var express = require('express');
var app = express();

app.get('/', function (req, res) {
res.send('Hello World!');

});

app.listen(3000, function () {
console.log('Example app listening on port 3000!');

});

app.js

node app.js

Starting the application:

Or if the app.js is already in the package.json file as the main program:

npm start

REST example with express

26

var express = require('express')
var app = express()

app.get('/movies', function (req, res) {
res.send('GET request to the homepage');

});

app.get('/movies/:id', function (req, res) {
res.send('GET request to the homepage with id='+req.params.id);

});

app.post('/movies', function (req, res) {
res.send('POST request to the homepage');

});

app.put('/movies/:id', function (req, res) {
res.send('PUT request to the homepage with id='+req.params.id);

});

app.delete('/movies/:id', function (req, res) {
res.send('DELETE request to the homepage with id='+req.params.id);

});

bower

 npm is good for the back-end (server-side of the application)
 dependencies are handled as a tree
 each module can use its own dependency
 even multiple versions of the same module can be loaded

 Bower is a package manager for the front-end (client-side of the
application)
 dependencies are flat

 the burden of dependency resolution is on you
 only a single version is loaded for each module (e.g. jquery)

 Bower can even be used together with other development
technologies, e.g. plain HTML, ASP.NET, JSF, etc.

 Configuration file for bower: bower.json

 Bower has similar commands to npm:

Dr. Balázs Simon, BME, IIT 27

npm install -g bower

bower init

bower install --save <module_name>

.

bower_components

node_modules

this will create the bower.json file

for normal runtime dependencies

Other modules

connect Connect is an extensible HTTP server framework for Node.js, providing a
collection of high performance “plugins” known as middleware; serves as a
base foundation for Express.

socket.io Enables real-time bidirectional event-based communication through
websockets.

mongoose Elegant MongoDB object modeling for Node.js

redis Redis client library. Redis is an open source (BSD licensed), in-memory data
structure store, used as a database, cache and message broker.

forever Probably the most common utility for ensuring that a given node script runs
continuously. Keeps your Node.js process up in production in the face of any
unexpected failures.

request A simplified HTTP client for calling REST services.

passport Passport is a unique authentication module for Node.js. The main goal of
Passport is to help with authentication requests, this Passport achieves
through the use of third-party plugins that act as authentication methods,
otherwise known as strategies.

Dr. Balázs Simon, BME, IIT 28

Other modules

mocha Mocha is a feature-rich JavaScript test framework running on Node.js and in
the browser, making asynchronous testing simple.

karma A simple tool that allows you to execute JavaScript code in multiple real
browsers. Can be integrated with mocha.

angular AngularJS is a structural framework for dynamic web apps. It lets you use
HTML as your template language and lets you extend HTML's syntax to
express your application's components clearly and succinctly. AngularJS's
data binding and dependency injection eliminate much of the code you
would otherwise have to write. Developed by Google.

react React is a declarative, efficient, and flexible JavaScript library for building
user interfaces. Your components tell React what you want to render – then
React will efficiently update and render just the right components when
your data changes. Developed by Facebook.

bootstrap Bootstrap is a free and open-source front-end web framework for designing
websites and web applications. It contains HTML- and CSS-based design
templates for typography, forms, buttons, navigation and other interface
components, as well as optional JavaScript extensions.

Dr. Balázs Simon, BME, IIT 29

TypeScript

Dr. Balázs Simon, BME, IIT 30

TypeScript

 TypeScript is a typed superset of JavaScript that compiles
to plain JavaScript

 Open-source

 Developed by Microsoft

 Existing JavaScript code can be directly used in TypeScript

 Plain JavaScript code can also call TypeScript code (the
compiled JavaScript version of the TypeScript code)

 Compiling a TypeScript file:

 TypeScript code is much better for maintainability than
plain JavaScript code

Dr. Balázs Simon, BME, IIT 31

npm install -g typescript

tsc helloworld.ts

Visual Studio Code

 Visual Studio Code is an open-source development
environment

 Great tool for Node.js and TypeScript

 Supports:
 syntax highlighting

 intellisense

 automatic compilation of TypeScript to JavaScript

 debugging of TypeScript and JavaScript

 running and debugging Node.js applications

Dr. Balázs Simon, BME, IIT 32

Typings: @types/<package>

 TypeScript requires typed interface descriptors for plain
JavaScript files in order to support compile-time type checking
and intellisense

 Typings are these typed interface descriptors

 Most Node.js modules also provide these descriptors, so it is
easier to develop directly in TypeScript

 Typings can be installed using npm:

Dr. Balázs Simon, BME, IIT 33

npm install --save @types/<module_name>

.

@types

node_modules

for normal runtime dependencies

npm install --global --save @types/<module_name>

for global dependencies

<module_name>

<module_name>

module’s code

module’s interface

Summary

Dr. Balázs Simon, BME, IIT 34

Summary

 Node.js is a high-performance framework for writing
server side applications in JavaScript (and TypeScript)

 Event-driven, non-blocking IO model

 NPM is the package and build manager for Node.js similar
to Maven

 There are lot’s of popular modules for Node.js to make
application development easier

 The TypeScript language provides type-safety and
intellisense, making development for Node.js
maintainable

Dr. Balázs Simon, BME, IIT 35

