
REST
Szolgáltatásorientált rendszerintegráció

Service-Oriented System Integration

Dr. Balázs Simon

BME, IIT

Outline

 JSON

 HTTP

 REST

 REST principles

 Criticism of REST

 CRUD operations with REST

 RPC operations with REST

 REST interface descriptors
 WSDL 2.0, Swagger, RAML, …

Dr. Balázs Simon, BME, IIT 2

JSON

Dr. Balázs Simon, BME, IIT 3

JSON

 JavaScript Object Notation

 Lightweight data-interchange format

 Easy for humans to read and write

 Easy for machines to parse and generate

 More compact than XML

Dr. Balázs Simon, BME, IIT 4

JSON basic types

 Number: signed decimal
 no separate types for integers and floating point numbers

 String
 double quote quotation, backslash for escaping

 Boolean: true or false

 Array:
 ordered list of zero or more values

 elements can be of any type

 Object:
 unordered collection of name-value (key-value) pairs

 keys must be unique within an object

 null: means no value

Dr. Balázs Simon, BME, IIT 5

JSON example

Dr. Balázs Simon, BME, IIT 6

{
"firstName": "John",
"lastName": "Smith",
"age": 25,
"address":
{

"streetAddress": "21 2nd Street",
"city": "New York",
"state": "NY",
"postalCode": "10021"

},
"phoneNumber":
[

{
"type": "home",
"number": "212 555-1234"

},
{

"type": "fax",
"number": "646 555-4567"

}
]

}

HTTP

Dr. Balázs Simon, BME, IIT 7

HTTP GET

Dr. Balázs Simon, BME, IIT 8

GET /index.html
HTTP/1.1
Host: www.google.com
User-Agent: Mozilla/5.0
Connection: keep-alive

HTTP/1.1 200 OK
Content-Type: text/html; charset=UTF-8
Content-Encoding: gzip
Server: gws
Content-Length: 10200

<!doctype html><html><head>…

Request: Response:
HTTP status code

HTTP GET: http://www.abc.com/login?user=xy&pass=123

Dr. Balázs Simon, BME, IIT 9

GET /login?user=xy&pass=123 HTTP/1.1

Host: www.abc.com

User-Agent: Mozilla/5.0

Connection: keep-alive

HTTP Method Local URL Version

Host name Query paramsHeaders+
Empty line

HTTP POST: http://www.abc.com/login

Dr. Balázs Simon, BME, IIT 10

HTTP Method Local URL Version

Host name HTTP Body:
Post parameters

Headers+
Empty line

POST /login HTTP/1.1

Host: www.abc.com

User-Agent: Mozilla/5.0

Content-Type: application/x-www-form-urlencoded

Content-Length: 16

user=xy&pass=123

REST

Dr. Balázs Simon, BME, IIT 11

REST

 REpresentational State Transfer

 RESTful HTTP

 HTTP protocol extension
 GET, POST, PUT, DELETE

 Input parameters:
 URL part

 URL query string

 POST parameter

 HTTP body

 Result:
 HTTP body

 Very simple: testable by browser

Dr. Balázs Simon, BME, IIT 12

GET examples

 GET /api/movies
 returns all movies

 GET /api/movies/12
 returns the movie with identifier 12

 GET /api/movies/12/actors
 returns the list of actors for the movie with identifier 12

 GET /api/movies?orderby=title
 returns all movies sorted by their titles

Dr. Balázs Simon, BME, IIT 13

GET

 GET is for reading, retrieving resources

 Must not modify any resources!
 HTTP specification for GET

 Input parameters:
 usually in the URL or in query parameter

 identifiers, paging, filtering and sorting criteria

 HTTP body is usually empty

 Output:
 in the HTTP body, usually XML or JSON

 success: 200 (OK)

 error: 404 (Not found) or 400 (Bad request)

Dr. Balázs Simon, BME, IIT 14

POST examples

 POST /api/movies
 creates a new movie

 the content of the movie is passed in the HTTP body:

Dr. Balázs Simon, BME, IIT 15

{
"title": "Batman Begins",
"year": 2005,
"director": "Cristopher Nolan"

}

POST

 POST is for creating new resources
 usually for creating a new item under an existing resource item

 Care must be taken when resending POST requests
 HTTP specification (e.g. credit card transaction)
 the server creates the resource whenever a POST request is made
 multiple identical POST requests may result in more than one

resources with the same content

 Input:
 URL: location of the parent resource
 HTTP body: the content of the child resource to be created

 Output:
 usually the identifier or location (Location HTTP header) of the

resource created
 success: 201 (Created)
 error: 404 (Not found) or 409 (Conflict)

Dr. Balázs Simon, BME, IIT 16

PUT examples

 PUT /api/movies/12
 updates the movie with identifier 12

 or creates a new movie if it does not exist

 the content of the movie is passed in the HTTP body:

Dr. Balázs Simon, BME, IIT 17

{
"title": "Batman Begins",
"year": 2005,
"director": "Cristopher Nolan"

}

PUT

 PUT is for updating a resource
 or creating a new one if it did not exist

 Input:
 URL of the resource to be updated

 the URL contains the identifier of the resource
 this will be the identifier on creation

 so no multiple resources are created when repeating the PUT operation

 HTTP body: the new content of the resource

 Output:
 HTTP body may be empty

 no identifier or location is necessary

 success: 204 (No content), 201 (Created), 200 (OK)

 error: 404 (Not found)

Dr. Balázs Simon, BME, IIT 18

DELETE examples

 DELETE /api/movies/12
 deletes the movie with identifier 12

 DELETE /api/movies/12/actors/65
 deletes the actor 65 from the movie 12

Dr. Balázs Simon, BME, IIT 19

DELETE

 DELETE is for deleting a resource

 Input:
 URL of the resource to be deleted

 the URL contains the identifier of the resource

 HTTP body is usually empty

 Output:
 either an empty HTTP body

 or the content of the deleted resource
 careful with this: it may be very large

 success: 204 (No content) or 200 (OK)

 error: 404 (Not found)

Dr. Balázs Simon, BME, IIT 20

REST parameter passing

Dr. Balázs Simon, BME, IIT 21

Input parameters

 Query parameter:
 http://…/calculator/add?left=3.0&right=5.0

 Path parameter:
 http://…/calculator/add/3.0/5.0

 Matrix parameter:
 http://…/calculator/add;left=3.0;right=5.0

 POST parameter:
 http://…/calculator/add
 like the query parameter but inside the HTTP body

 HTTP body:
 a serialized resource (e.g. in XML or JSON)

 Expected result data format: HTTP “Accept” header
 for XML: application/xml
 for JSON: application/json

Dr. Balázs Simon, BME, IIT 22

Output result

 In HTTP body

 Actual data format: HTTP “Content-Type” header
 or if the server could not support the requested data format:

HTTP 406 (Not acceptable)

 Usual data formats:
 XML

 JSON

Dr. Balázs Simon, BME, IIT 23

XML result

Dr. Balázs Simon, BME, IIT 24

> GET /RestApp1/resources/person/getpb HTTP/1.1
> User-Agent: curl/7.20.1 (i686-pc-cygwin) …
> Host: localhost:8080
> Accept: application/xml
>
< HTTP/1.1 200 OK
< X-Powered-By: Servlet/3.0
< Server: GlassFish Server Open Source Edition 3.0.1
< Content-Type: application/xml
< Content-Length: 227
< Date: Sun, 13 Mar 2011 12:21:17 GMT
<
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<person><name>Peter Bishop</name><age>27</age>
<friends><name>Olivia Dunham</name><age>26</age></friends>
<friends><name>Bolivia Dunham</name><age>26</age></friends>
</person>

curl -v -X GET -H"Accept: application/xml"
http://localhost:8080/RestApp1/resources/person/getpb

XML result

Dr. Balázs Simon, BME, IIT 25

> GET /RestApp1/resources/person/getpb HTTP/1.1
> User-Agent: curl/7.20.1 (i686-pc-cygwin) …
> Host: localhost:8080
> Accept: application/json
>
< HTTP/1.1 200 OK
< X-Powered-By: Servlet/3.0
< Server: GlassFish Server Open Source Edition 3.0.1
< Content-Type: application/json
< Transfer-Encoding: chunked
< Date: Sun, 13 Mar 2011 12:21:19 GMT
<
{"name":"Peter Bishop","age":"27",
"friends":[{"name":"Olivia Dunham","age":"26"},
{"name":"Bolivia Dunham","age":"26"}]}

curl -v -X GET -H"Accept: application/json"
http://localhost:8080/RestApp1/resources/person/getpb

REST principles

Dr. Balázs Simon, BME, IIT 26

REST principles

 Identifying resources

 Linking things

 CRUD operations

 Multiple data representation

 Stateless communication

Dr. Balázs Simon, BME, IIT 27

Identifying resources

 URI: Universal Resource Identifier
 base of resource identification (URN, URL)

 URN: Universal Resource Name
 URI that does not contain location information
 e.g. urn:isbn:0307346617
 pro: valid forever
 con: contain no information on their resolution

 URL: Universal Resource Locator
 URI that contains location information
 con: may not be valid forever, especially if they contain

technology-specific parts, e.g.
http://someserver.com/ActionServlet?blah=blah

 but they can be used correctly, e.g.
http://company1.com/customer/123456

Dr. Balázs Simon, BME, IIT 28

Identifying resources

 Use URLs!
 unique identifier for the resource

 easy to resolve due to the location information

 should be independent of the underlying technology

 Examples for resources:
 documents (blogs, news, etc.)

 data (calculation result, metadata, etc.)

 services (SOAP web service, REST, etc.)

 concepts (people, organizations, etc.)

Dr. Balázs Simon, BME, IIT 29

Linking things

 URLs must be chosen carefully

 Has a lot of advantages:
 easy to forward

 resource behind it can be accessed later

 analogy: C++ pointers

 more secure: easier to configure access rights to the resource

Dr. Balázs Simon, BME, IIT 30

Processing URLs

 URL seems hierarchic

 Client:
 should not process the contents of an URL

 should only use it as a reference

 like browsers

 the structure of the URL may change by time

 Hence, no need for interface description

 The four basic operations are enough for handling
resources: GET, POST, PUT, DELETE

Dr. Balázs Simon, BME, IIT 31

Standard operations on resources

 CRUD: create, read, update, delete

 Properties (from the HTTP specification):
 safe: the client only retrieves data, it is not responsible for side

effects

 idempotent: repeating the same operation results in the same
state

 Repeating different idempotent operations may result in
different results
 e.g. read-delete-read

 Repeating operations without side effects has the same
results

Dr. Balázs Simon, BME, IIT 32

Standard operations

CRUD safe idempotent cacheable

GET read yes yes yes

POST create no no no

PUT
update/
create

no yes no

DELETE delete no yes no

Dr. Balázs Simon, BME, IIT 33

POST: the servers assigns the identifier
PUT: the client assigns the identifier

Multiple data representation

 HTML:
 only for humans
 structure may often change
 computers require more formal representation (e.g. XML, JSON)

 The client should be able to choose between the
representations

 A possible but bad solution:
 http://company1.com/2009/report.html
 http://company1.com/2009/report.xml
 http://company1.com/2009/report.xls

 Correct solution: “Accept” HTTP header, e.g.
 GET /2009/report HTTP/1.1
Host: company1.com
Accept: application/xml

 If the server does not support it, it may send: HTTP 406 Error

Dr. Balázs Simon, BME, IIT 34

Stateless communication

 REST is stateless

 But the application may have a state:
 stored in a resource (not in memory)

 stored on the client side (always sent to the server)

 Advantage:
 scalability: no session required on the server side

 different server instances may serve the same client with serial
requests

 server instances can be stopped and restarted

Dr. Balázs Simon, BME, IIT 35

Criticism of REST

Dr. Balázs Simon, BME, IIT 36

REST criticism

 Only usable for CRUD operations

 No interface description

 Reveals too many internal details

 Lack of design guidelines

 Lack of middleware functions

 No publish-subscribe and asynchronous communication

Dr. Balázs Simon, BME, IIT 37

Only usable for CRUD operations

 It can be used for other operations, e.g.:
 http://example.com/sum?a=2&b=3

 But this is cheating:
 the URI must uniquely identify the resource

 No cheating:
 the resource is the sum of two and three

 Question: which HTTP method to use?
 GET is sufficient: cacheable, no side effect, safe, idempotent

 But: usually we need side effects. Which HTTP method to
use in this case?
 POST
 the server can respond with a URI pointing to the result
 the result can be retrieved by a redirect, it is reusable, cacheable

Dr. Balázs Simon, BME, IIT 38

No interface description

 Interface description:
 describes the operation and their parameters
 no semantics
 used for: generating client proxy and server skeleton

 REST:
 only 4 operations
 data: usually in XML (can be checked by XSD), or in JSON

 Recommended solution:
 textual description about the semantics of the operations
 e.g. description in HTML for a GET

 There are formal descriptors:
 WADL (Web Application Description Language), WSDL 2.0, Swagger,

RAML, …
 but they are not widely supported (e.g. .NET does not support them)

Dr. Balázs Simon, BME, IIT 39

Reveals too many internal details

 Mapping a database to REST shows the database structure

 REST does not mean that the inner database
representation must be published
 REST should have a protective logic before accessing the

database

 REST is data centric instead of operation centric

 Rule: publish the resources through a URI
 they can be protected easier

 Other operations besides CRUD
 these can be as complex as a SOAP or RPC call

 can execute business logic and protect the database

Dr. Balázs Simon, BME, IIT 40

Lack of design guidelines

 No official best-practices

 No standard solution for the usual tasks

 No recommendation for transforming existing services to
REST

 No recommendation for the URI format

 These critics are not true anymore
 there are guidelines

 not standard, but quasi-standard

Dr. Balázs Simon, BME, IIT 41

Lack of middleware aspects

 No transactions:
 true

 No security:
 message-level security: true
 point-to-point security: there is HTTPS

 but: don’t pass parameters in the URL

 No reliable messaging
 we cannot be sure whether the operation succeeded
 if HTTP 200 OK: we know it’s a success
 if no answer: we can’t be sure
 but: idempotent operations (GET, PUT, DELETE) can be resent
 we have to be careful with POST

 These critics are true, but REST was never designed for these
 use SOAP and WS-* when these middleware aspects are required

Dr. Balázs Simon, BME, IIT 42

No publish-subscribe and asynchronous communication

 REST: client-server model

 Publish-subscribe:
 RSS is a possible solution

 GET operation, can be cached

 but: the client is the initiator

 notification-by-polling

 Asynchrnonous operations:
 if the server has to perform a long task

 solution: reply with HTTP 202 Accepted

 responses:
 the server can return the URI of the result, the client can poll at this URI

 the client passes a URI to the server, the server can send the result here

Dr. Balázs Simon, BME, IIT 43

CRUD operations with
REST

Dr. Balázs Simon, BME, IIT 44

CRUD operations

 POST: creating a new resource (create)

 GET: retrieving resources (read)

 PUT: updating a resource (update)
 PATCH: partially updating a resource

 but PATCH is not widely supported

 DELETE: deleting a resource (delete)

Dr. Balázs Simon, BME, IIT 45

Resource types

 Collection (~ database table)
 a collection of instances

 e.g. /api/movies, /api/movies/12/actors

 Instance (~ database record)
 a single entity with attributes and values

 selected from a collection by its identifier

 e.g. /api/movies/12, /api/movies/12/actors/53

 (Database is only an analogy! Do not publish a database
directly through REST!)

Dr. Balázs Simon, BME, IIT 46

GET: read

 GET /api/movies
 returns all the movies

 GET /api/movies/12
 returns the movie with identifier 12

Dr. Balázs Simon, BME, IIT 47

DELETE: delete

 DELETE /api/movies/12
 deletes the movie with identifier 12

 DELETE /api/movies
 deletes all movies

 often not intended: do not use it!

Dr. Balázs Simon, BME, IIT 48

PUT: full update or create

 PUT /api/movies/12
 updates the movie with identifier 12

 full update: the resource will be completely replaced
 question: how to make partial updates?

 PATCH method? it is not widely supported...

 or creates a movie with identifier 12 if it does not exists

Dr. Balázs Simon, BME, IIT 49

POST: create or partial update

 POST /api/movies
 creates a new movie

 identifier is assigned by the server

 the identifier or the new resource should be returned

 POST /api/movies/12
 invalid for creation: the server should assign the identifier

 but it can be used for partial update: only the fields sent in the
request will be updated
 the updated resource should be returned

Dr. Balázs Simon, BME, IIT 50

RPC operations with REST

Dr. Balázs Simon, BME, IIT 51

RPC with REST

 REST is not designed for RPC
 REST is for handling resources

 But: REST can be used for RPC
 Request:

 always POST
 other HTTP methods are not used

 wrapper message in the HTTP body for the operations of the service
 root name: the name of the operation
 children of the root: parameters of the operation

 other parameter passing methods are not used

 Response:
 wrapper message containing the single return result

 Like SOAP document/wrapped but without the SOAP envelope
 Interface description:

 interface must be documented
 provide XSD for the clients

Dr. Balázs Simon, BME, IIT 52

RPC service example

Dr. Balázs Simon, BME, IIT 53

struct Complex
{
double Re;
double Im;

}

interface Calculator
{
Complex Add(Complex left, Complex right);
Complex Subtract(Complex left, Complex right);
Complex Multiply(Complex left, Complex right);
Complex Divide(Complex left, Complex right);

}

REST request example

 Recommended:
 POST /api/calculator/Add

 POST /api/calculator/Subtract

 etc.

 HTTP body:

Dr. Balázs Simon, BME, IIT 54

<Add>
<left>
<Re>4.5</Re>
<Im>3.1</Im>

</left>
<right>
<Re>7.2</Re>
<Im>9.3</Im>

</right>
</Add>

{
"left": {
"Re": "4.5",
"Im": "3.1"

},
"right": {
"Re": "7.2",
"Im": "9.3"

}
}

REST response example

 HTTP body:

Dr. Balázs Simon, BME, IIT 55

<AddResponse>
<AddResult>
<Re>11.7</Re>
<Im>12.4</Im>

</AddResult>
</AddResponse>

{
"AddResult": {
"Re": "11.7",
"Im": "12.4"

}
}

REST interface
descriptors

Dr. Balázs Simon, BME, IIT 56

REST interface descriptors

 No standard and widely supported interface descriptor,
but there are a lot of initiatives

 WSDL 2.0, WADL
 neither is widely adopted
 mostly because of poor human readability

 OpenAPI (formerly Swagger)
 open-source, language agnostic, extensible into new technologies and protocols

beyond HTTP
 code generators for many languages
 very popular
 no built-in support in WCF and JAX-RS

 RAML (RESTful API Modeling Language)
 general API description language
 more readable than Swagger
 good for designing an API from scratch

 Swagger is best suited to documenting existing API

 no built-in support in WCF and JAX-RS

 API Blueprint
 good for designing an API from scratch

 …
Dr. Balázs Simon, BME, IIT 57

Swagger example

Dr. Balázs Simon, BME, IIT 58

{

"swaggerVersion": "1.2",

"basePath": "http://localhost:8000/greetings",

"apis": [

{

"path": "/hello/{subject}",

"operations": [

{

"method": "GET",

"summary": "Greet our subject with hello!",

"type": "string",

"nickname": "helloSubject",

"parameters": [

{

"name": "subject",

"description": "The subject to be greeted.",

"required": true,

"type": "string",

"paramType": "path"

}

]

}

]

}

],

"models": {}

}

RAML example

Dr. Balázs Simon, BME, IIT 59

#%RAML 1.0
title: GitHub API
version: v3
baseUri: https://api.github.com
mediaType: application/json
securitySchemes:
oauth_2_0: !include securitySchemes/oauth_2_0.raml

types:
Gist: !include types/gist.raml
Gists: !include types/gists.raml

resourceTypes:
collection: !include types/collection.raml

traits:
securedBy: [oauth_2_0]
/search:
/code:
type: collection
get:

