
Microservices
Szolgáltatásorientált rendszerintegráció

Service-Oriented System Integration

Dr. Balázs Simon

BME, IIT



Overview

 Monolithic applications

 Microservices

 Patterns related to microservices

 Containers for microservices

 Drawbacks and challenges of microservices

Dr. Balázs Simon, BME, IIT 2



Monolithic applications

Dr. Balázs Simon, BME, IIT 3



Monolithic applications

 Cost, time, and complexity of managing HW strongly 
influences application development

 Before cloud systems, it was hard to dynamically assign 
HW resources: the infrastructure was static
 DB servers, application servers, web servers, load-balancers, 

caches

 Applications were designed for a fixed HW infrastructure

 Typically: three monolithic tiers
 DB + business logic + web

 Each tier scales independently
 each tier is a monolithic application on its own
 although they can contain multiple components
 interfaces only between tiers

Dr. Balázs Simon, BME, IIT 4

Web

Business 
logic

DB



Computer/VM Computer/VM Computer/VM

Computer/VM Computer/VM

Computer/VM Computer/VM Computer/VM Computer/VM

Scaling applications with monolithic tiers

Dr. Balázs Simon, BME, IIT 5

Web

Business logic

DB Backup DBreplication

Web Web

Business logic Business logic Business logic

Load balancer + cache

Load balancer + cache

Cache

St
at

el
es

s
St

at
e



Monolithic applications

 Advantages:
 simpler to design
 there is a single product with a single version

 easier to maintain consistency between components

 faster call between components within a single tier

 Disadvantages:
 the whole application has to be developed and deployed in one piece
 the entire tier has to be retested and redeployed when something is 

changed
 can be slow
 deploying a new version without downtime is a challenge

 tight coupling between components within a tier:
 components cannot be scaled independently, the whole tier has to be scaled
 harder to test individual components

 communication between tiers is slow
 caches are needed between them

Dr. Balázs Simon, BME, IIT 6



Microservices

Dr. Balázs Simon, BME, IIT 7



Application

Microservices

Dr. Balázs Simon, BME, IIT 8

Web

Business logic

DB

Monolithic Microservices

Idea: split monolithic applications into smaller components, which can be 
developed, deployed and scaled independently from each other

Computer/VM Computer/VM Computer/VM

Load balancer

Application

Scaling:



Application built of microservices

 The application is composed of many small services

 Services are developed and tested independently by small 
teams

 Services are deployed independently

 Services are versioned independently

 Services scale independently

 The entire application evolves as the sum of all services

Dr. Balázs Simon, BME, IIT 9

Application



Properties of microservices

 Each service deals only with one business functionality

 Services can be written in any programming language and can 
use any framework

 Services run in their own containers deployed across a cluster 
of machines

 Services can optionally have internal state

 Services interact with other microservices over well-defined 
interfaces and protocols

 Services have unique names used to resolve their location

 Services and their internal states can be versioned

 Services remain consistent and available in the presence of 
failures

 Services report health and diagnostics

Dr. Balázs Simon, BME, IIT 10



One business functionality

 Each service encapsulates a simple business functionality
 e.g. user management, accounting, shipping, etc.

 Development is driven more by business scenarios than 
technology (unlike the tiered approach)

 The development team deals with the whole 
implementation stack
 user-interface, persistent storage, communication

 teams are cross-functional

 A microservice is a product not a project
 the team is not disbanded when the service is completed

 the team maintains the service

Dr. Balázs Simon, BME, IIT 11



Any programming language and any framework

 Different tasks require different technologies
 maybe the performance is important: C++
 maybe the ease of managed development is important: C#, Java
 maybe the user experience is important: JavaScript
 etc.

 With microservices the different parts of the application can 
be implemented with the appropriate technologies

 This eliminates any long-term commitment to a technology 
stack: services can be rewritten easily with a new technology 
stack without affecting other services

 However:
 different technologies require different runtime frameworks: each 

service needs its own runtime environment
 the services have to communicate with each other through a 

framework independent communication technology

Dr. Balázs Simon, BME, IIT 12



Containers

 Containers provide the runtime environment for 
microservices
 the required frameworks and technologies specific to the 

implementation of the given service

 A container can be tailored to provide only the required 
libraries
 all the required libraries are included

 unnecessary libraries are not included

 Containers ensure that only the required amount of 
resources are used by the process in which the service 
runs

 Containers isolate services from each other

Dr. Balázs Simon, BME, IIT 13



Optional internal state

 Each microservice manages and stores its own state, 
usually in its own database (SQL or NoSQL)

 Each service is responsible for scaling both code and state 
together to meet the demands of the service

 The state of the application is distributed among multiple 
services

 The states of different services have to be strictly 
separated from each other
 don’t do joins between tables of different services
 don’t create dependencies at the storage layer
 otherwise, you can't scale individual components

 Downside: views and queries involving multiple services 
have a huge communication overhead

Dr. Balázs Simon, BME, IIT 14



Communication with other microservices

 Services interact with other microservices over well-
defined interfaces and protocols
 just like SOA

 Communication can be any technology
 but usually it is REST

 messages are typically JSON or XML, but for efficiency they can 
be binary (e.g. Protocol Buffers)

 Microservices require an interface description language
 so that clients can be implemented easily

 should be a strongly typed language 
(e.g. Swagger, proto, WSDL, etc.)

 Communication has a huge overhead compared to in-
memory calls of monolithic applications

Dr. Balázs Simon, BME, IIT 15



Resolving microservices

 Microservices need to find other microservices
 physical addresses of other services shouldn’t be hardwired

 Microservices need addressable (logical) names
 independent from the infrastructure that they are running on

 Service deployment and discovery need to be in 
interaction
 when a service is deployed: a new physical name is registered 

for the logical name
 when a service is being discovered: the logical name is resolved 

to a physical name

 A service registry is needed for:
 service discovery
 load balancing
 failover

Dr. Balázs Simon, BME, IIT 16



Versioning code

 Services evolve over time
 Usually this is solved by versioning
 But the preference in the microservices world is to use 

versioning only as a last resort
 If there are multiple incompatible versions of the same service 

used by multiple clients:
 developers have to maintain bug fixes in all supported versions
 old versions can be easily broken because of the shared code 

pathways
 there is too much operational complexity: service management, 

monitoring, support, discovery, testing, etc.

 The rule is: be liberal in what you accept and conservative in 
what you send (Postel's Law)
 services should be backwards compatible with older versions

 Create a new version only if it is necessary to introduce a 
breaking change in the public interface of the service

Dr. Balázs Simon, BME, IIT 17



Versioning internal state

 Services store their internal state in their own databases

 A change in the service may require updating the 
database schema: the tables have to be upgraded to the 
new schema

 This mandates a new version of the service:
 if a newer version of a microservice fails during upgrade, the 

code and state need to be rolled back to an earlier version

 it is common to upgrade a microservice for a specific set of 
customers to test new functionality before rolling it out more 
widely

 Even if the public API doesn’t change but the internal state 
representation does, it is a good idea to introduce a new 
version of the service

Dr. Balázs Simon, BME, IIT 18



Consistency and availability in the presence of failures

 We need to detect when a microservice fails (a hard 
problem on its own)

 We also need to restart the failed microservice
 restart happens often on another machine for availability 

reasons
 the saved state of the failed service has to be restored

 Microservices have to be resilient:
 in code: when the service is restarting
 in data: consistency and no data loss

 A resilient microservice has to be able to decide whether:
 an upgrade failed
 it can continue with the new version
 it should roll back to the previous version
 enough machines are available to keep moving forward

Dr. Balázs Simon, BME, IIT 19



Report health and diagnostics

 A microservice must report its health and diagnostics
 operating the services is very difficult with no insight

 How to log health and diagnostic events must be agreed 
upon by all teams
 a standard logging format is needed for all services

 Diagnostic events have to be correlated
 challenges: clock skews and determining event order across a 

set of independent services

 Health is about the microservice reporting its current 
state
 state of deployment
 state of an ongoing upgrade
 challenge: creating self-healing services

Dr. Balázs Simon, BME, IIT 20



Microservices

 Definition:
 The microservice architectural style is an approach to developing 

a single application as a suite of small services, each running in 
its own process and communicating with lightweight 
mechanisms, often an HTTP resource API. These services are 
built around business capabilities and independently 
deployable by fully automated deployment machinery. There is 
a bare minimum of centralized management of these services, 
which may be written in different programming languages and 
use different data storage technologies.

– James Lewis and Martin Fowler

 Microservices build a lightweight and fine-grained 
Service-oriented architecture (SOA)

Dr. Balázs Simon, BME, IIT 21



Microservices vs. Object-orientation

Microservices Object-orientation

Small services Small classes

Services have well defined interfaces, 
a change in an interface has a large impact

Classes have a well defined interface (public 
methods), although it can be changed easily

Each service runs in its own process All objects run in the same process

Remote communication between services Local (in-process) communication between objects

Finding the required services with the appropriate 
interface and version is a challenge, usually done 
through a service registry

Objects are easy to find: they are accessible 
through in-memory reference

Services can be developed independently The whole application must be developed at once

Services can be deployed independently The whole application must be deployed

Services can be replaced independently The whole application must be replaced

Services scale independently The whole application must be scaled

Minimal centralized management No management

Services written in different programming 
languages

Classes written in the same programming language

Different data storage technologies Common data storage technology

Dr. Balázs Simon, BME, IIT 22



Microservices vs. Components

Microservices Components

Small services Small components

Services have well defined interfaces, 
a change in an interface has a large impact

Components have a well defined interface, 
a change in an interface has a large impact

Each service runs in its own process All components run in the same process

Remote communication between services
Local (in-process) communication between 
components

Finding the required services with the appropriate 
interface and version is a challenge, usually done 
through a service registry

Components are easy to find: they are accessible 
through a naming service or dependency injection

Services can be developed independently Components can be developed independently

Services can be deployed independently Components can be deployed independently

Services can be replaced independently Components can be replaced independently

Services scale independently The whole application must be scaled

Minimal centralized management Centralized management

Services written in different programming 
languages

Components written in the same programming 
language

Different data storage technologies Common data storage technology
Dr. Balázs Simon, BME, IIT 23



Microservices vs. SOA

Microservices SOA

Small services Small services

Services have well defined interfaces, 
a change in an interface has a large impact

Services have well defined interfaces, 
a change in an interface has a large impact

Each service runs in its own process Each service runs in its own process

Remote communication between services Remote communication between services

Finding the required services with the appropriate 
interface and version is a challenge, usually done 
through a service registry

Finding the required services with the appropriate 
interface and version is a challenge, usually done 
through a service registry

Services can be developed independently Services can be developed independently

Services can be deployed independently Services can be deployed independently

Services can be replaced independently Services can be replaced independently

Services scale independently Services scale independently

Minimal centralized management Centralized management within a company

Services written in different programming 
languages

Services written in different programming 
languages

Different data storage technologies Different data storage technologies

Dr. Balázs Simon, BME, IIT 24



Patterns related to 
microservices

Source: http://microservices.io/patterns/

Dr. Balázs Simon, BME, IIT 25

http://microservices.io/patterns/


Pattern groups
 Architecture: Which architecture should you choose for an application?

 Decomposition: How to decompose an application into services?

 Deployment: How to deploy an application’s services?

 Cross-cutting: How to handle cross cutting concerns?

 Communication style: Which communication mechanisms do services use to communicate 
with each other and their external clients?

 External API: How do external clients communicate with the services?

 Service discovery: How does the client of an RPC-based service discover the network 
location of a service instance?

 Reliability: How to prevent a network or service failure from cascading to other services?

 Data management: How to maintain data consistency and implement queries?

 Security: How to communicate the identity of the requestor to the services that handle 
the request?

 Testing: How to make testing easier?

 Observability: How to understand the behavior of an application and troubleshoot 
problems?

 UI patterns: How to implement a UI screen or page that displays data from multiple 
services?

Dr. Balázs Simon, BME, IIT 26



Architecture and decomposition patterns

 Architecture: Which architecture should you choose for 
an application?
 Monolithic: architect an application as a single deployable unit

 Microservices: architect an application as a collection of loosely 
coupled services

 Decomposition: How to decompose an application into 
services?
 Decompose by business capability or subdomain: define 

services corresponding to business capabilities or subdomains 
using domain-driven design (DDD)
 e.g. user management, inventory management, order management, 

delivery management, etc.

Dr. Balázs Simon, BME, IIT 27

Monolithic Microservices



Deployment patterns

 Deployment: How to deploy an application’s services?
 Multiple service instances per host: deploy multiple service instances on a 

single host
 Service instance per host: deploy each service instance in its own host
 Service instance per VM: deploy each service instance in its VM
 Service instance per Container: deploy each service instance in its container
 Serverless deployment: deploy a service using serverless deployment 

platform
 Service deployment platform: deploy services using a highly automated 

deployment platform that provides a service abstraction
 Blue-green deployment: two identical production environments (blue is live, 

green is idle), deploy new version of services to the green environment, and 
if everything is working, swap the two environments

Dr. Balázs Simon, BME, IIT 28

Single service 
per host

Multiple services 
per host

Serverless
deployment

Service per 
container

Service per VM

Service deployment 
platform

Blue-green 
deployment



Cross-cutting patterns

 Cross-cutting concerns: How to handle cross cutting concerns?
 Microservice chassis: a framework that handles cross-cutting 

concerns and simplifies the development of services
 Externalized configuration: externalize all configuration such as 

database location and credentials

 Examples of cross-cutting concerns:
 Configuration: includes credentials, and network locations of external 

services such as databases and message brokers
 Logging: configuring of a logging framework such as log4j or logback
 Health checks: a url that a monitoring service can “ping” to determine 

the health of the application
 Metrics: measurements that provide insight into what the application 

is doing and how it is performing
 Distributed tracing: instrument services with code that assigns each 

external request an unique identifier that is passed between services
 ...

Dr. Balázs Simon, BME, IIT 29

Externalized 
configuration

Microservice
chassis



Communication style patterns

 Communication style: Which communication mechanisms 
do services use to communicate with each other and their 
external clients?
 Remote Procedure Call: use an RPC-based protocol for inter-

service communication

 Messaging: use asynchronous messaging for inter-service 
communication

 Domain-specific protocol: use a domain-specific protocol

Dr. Balázs Simon, BME, IIT 30

RPC Messaging

Domain-specific 
protocol



External API patterns

 External API: How do external clients communicate with 
the services?
 API gateway: a service that provides each client with unified 

interface to services

 Backend for front-end: a separate API gateway for each kind of 
client

Dr. Balázs Simon, BME, IIT 31

API gateway
Backend for 

front-end



Service discovery patterns

 Service discovery: How does the client of an RPC-based 
service discover the network location of a service instance?
 Service registry: a database of service instance locations
 Client-side discovery: client queries a service registry to discover the 

locations of service instances
 Server-side discovery: router queries a service registry to discover the 

locations of service instances
 Self registration: service instance registers itself with the service 

registry
 3rd party registration: a 3rd party registers a service instance with the 

service registry

Dr. Balázs Simon, BME, IIT 32

Client-side 
discovery

Server-side 
discovery

Self registration

3rd party 
registration

Service registry



Reliability patters

 Reliability: How to prevent a network or service failure 
from cascading to other services?
 Circuit breaker: invoke a remote service via a proxy that fails 

immediately when the failure rate of the remote call exceeds a 
threshold

Dr. Balázs Simon, BME, IIT 33

Circuit breaker



Data management

 Data management: How to maintain data consistency and implement queries?
 Database per service: each service has its own private database
 Shared database: services share a database
 Event-driven architecture: use events to maintain data consistency across services
 Event sourcing: persist aggregates as a sequence of events
 Transaction log tailing: publish changes captured in the database’s transaction log as 

messages
 Database triggers: use triggers to capture changes made to data
 Application events: application inserts events into a database table that is used as a 

message queue
 CQRS (Command Query Responsibility Segregation):

 command-side: handles create, update, and delete requests and emits events when data changes
 query-side: handles queries by executing them against one or more materialized views that are kept up 

to date by subscribing to the stream of events emitted when data changes

Dr. Balázs Simon, BME, IIT 34

Shared database

Database per 
service

Event-driven 
architecture

Event sourcing CQRS

Transaction log 
tailing

Database 
triggersApplication 

events



Security

 Security: How to communicate the identity of the 
requestor to the services that handle the request?
 Access Token: a token that securely stores information about 

user that is exchanged between services

Dr. Balázs Simon, BME, IIT 35

Access Token



Testing

 Testing: How to make testing easier?
 Service Component Test: a test suite that tests a service in 

isolation using test doubles for any services that it invokes

 Service Integration Contract Test: a test suite for a service that 
is written by the developers of another service that consumes it

Dr. Balázs Simon, BME, IIT 36

Service 
Component Test

Service Integration 
Contract Test



Observability

 Observability: How to understand the behavior of an application and 
troubleshoot problems?
 Log aggregation: aggregate application logs
 Application metrics: instrument a service’s code to gather statistics about 

operations
 Audit logging: record user activity in a database
 Distributed tracing: instrument services with code that assigns each external 

request a unique identifier that is passed between services. Record information 
(e.g. start time, end time) about the work (e.g. service requests) performed when 
handling the external request in a centralized service

 Exception tracking: report all exceptions to a centralized exception tracking 
service that aggregates and tracks exceptions and notifies developers.

 Health check API: service API (e.g. HTTP endpoint) that returns the health of the 
service and can be pinged, for example, by a monitoring service

Dr. Balázs Simon, BME, IIT 37

Audit logging Application metrics

Distributed tracing Health check API

Exception tracking Log aggregation



UI patterns

 UI patterns: How to implement a UI screen or page that 
displays data from multiple services?
 Server-side page fragment composition: build a webpage on 

the server by composing HTML fragments generated by 
multiple, business capability/subdomain-specific web 
applications

 Client-side UI composition: Build a UI on the client by 
composing UI fragments rendered by multiple, business 
capability/subdomain-specific UI components

Dr. Balázs Simon, BME, IIT 38

Server-side page 
fragment composition

Client-side UI 
composition



Containers for 
microservices

Dr. Balázs Simon, BME, IIT 39



Containers for microservices

 A container instance hosts one or more microservices
(typically only one)

 The container must provide the runtime environment and 
all the libraries required by the microservice

 The application can be built from many microservices, and 
each of them may require a different programming 
language, runtime environment and a set of libraries

 Selecting the container technology depends on what kind 
of runtime and libraries the services need

Dr. Balázs Simon, BME, IIT 40



Containers for microservices

 Docker

 Kubernetes

 Mesos

 Pivotal Cloud Foundry

 Service Fabric

 OpenShift

 WildFly Swarm

 ...

Dr. Balázs Simon, BME, IIT 41



Docker

 Can be used to host microservices or just to simply run 
applications in an isolated environment

 Standard packaging format for containers

 Isolated containers are portable to any machine running 
Docker

 Services and applications can be written in any 
programming language

 Docker Compose defines an application model that 
supports multiple Docker-packaged microservices

 Docker Swarm serves as a cluster manager

 Docker has a great tooling ecosystem

Dr. Balázs Simon, BME, IIT 42



Kubernetes

 Originally developed by Google

 Open-source system for automating deployment, 
operations, and scaling of containerized applications

 Containers that make up an application can be grouped 
into logical units for easy management and discovery

 Kubernetes builds on Google’s experiences running large 
scale services

Dr. Balázs Simon, BME, IIT 43



Mesos

 Developed by Apache

 Mesos is a distributed systems kernel

 The Mesos kernel runs on every machine

 Provides applications (e.g., Hadoop, Spark, Kafka, 
Elasticsearch) with API’s for resource management and 
scheduling across entire datacenter and cloud 
environments

 Mesos abstracts CPU, memory, storage, and other 
compute resources away from machines (physical or 
virtual) like it is a single pool of resources

Dr. Balázs Simon, BME, IIT 44



Pivotal Cloud Foundry

 Based on the open-source Cloud Foundry

 Supports workflow and container scheduling

 Microservice patterns:
 service discovery
 client side load balancing
 circuit breakers
 distributed tracing

 Supports a wide range of service management capabilities:
 autoscaling
 blue-green updates
 health monitoring
 application metrics
 streaming logs

 Utilizes Spring Cloud and NetflixOSS

Dr. Balázs Simon, BME, IIT 45



Service Fabric

 Developed by Microsoft

 Provides an SDK and Visual Studio support

 Features:
 lifecycle management
 hybrid deployments
 extensible health models for both the infrastructure and 

microservices
 automated health-based upgrade and automatic rollback
 stateless and stateful microservices
 data consistency
 state replication framework
 transactions for stateful data

 Available in Azure and other clouds

Dr. Balázs Simon, BME, IIT 46



OpenShift

 Developed by Red Hat

 Docker container-based packaging

 Can run:
 containerized JBoss Middleware

 multiple programming languages

 databases

 other application runtimes

 Automated application build and deployment process

Dr. Balázs Simon, BME, IIT 47



WildFly Swarm

 Developed by Red Hat

 Designed for packaging and running Java EE applications as 
microservices

 Microservices can be packaged with just enough of the server 
runtime

 Fractions (features):
 they are modules implementing microservice patterns and different parts of 

Java EE
 only the required fractions have to be imported
 examples for fractions:

logging, JPA, REST, web, security, transactions, monitoring, Spring, ...

 Two kinds of runtime jars can be built:
 simple jar: contains only the application code, takes dependencies from the 

local Maven repository
 über-jar: contains the application code along with all the necessary parts 

(fractions and all their dependencies) of WildFly to support it

 Applications previously running on the WildFly Application Server 
can be split into microservices which can then run in a WildFly
Swarm

Dr. Balázs Simon, BME, IIT 48



Drawbacks and 
challenges of 
microservices

Dr. Balázs Simon, BME, IIT 49



Drawbacks of microservices

 Services form information barriers

 Microservices introduce additional complexity and new 
problems to deal with:
 network latency, message formats, load balancing and fault 

tolerance

 Inter-service calls over a network have a higher cost than 
in-process calls within a monolithic service process:
 network latency and message processing time 

 Moving responsibilities between services is more difficult:
 requires communication between different teams, rewriting the 

functionality in another language or fitting it into a different 
infrastructure

 Small services can lead to too many services
 internal modularization may lead to a simpler design

Dr. Balázs Simon, BME, IIT 50



Drawbacks of microservices

 Additional complexity of creating a distributed system
 developer tools/IDEs are oriented on building monolithic applications
 testing is more difficult
 developers must implement the inter-service communication 

mechanism
 implementing use cases that span multiple services without using 

distributed transactions is difficult
 implementing use cases that span multiple services requires careful 

coordination between the teams

 Deployment complexity
 Operational complexity of managing a system comprised of 

many different service types
 If there is a problem it is hard to see the exact cause and effect
 The complexity of a monolithic application is only shifted into 

the network, but persists:
 You can move it about but it's still there! 

— Robert Annett: Where is the complexity?

Dr. Balázs Simon, BME, IIT 51



Challenges of microservices

 When to use the microservice architecture?

 How to decompose the application into services?

 How to solve the problem of information barriers 
hindering productivity?

 How to maintain data consistency?

 How to implement queries?

 How do services communicate with each other?

 How do services find each other?

 How to manage the dependency hell between services?

Dr. Balázs Simon, BME, IIT 52


