ON{€]
Szolgaltatasorientalt rendszerintegracio
Service-Oriented System Integration

Dr. Baldzs Simon
BME, IIT

Outline

" Problems with Java modularization
= OSGi overview

= OSGi bundles

= OSGi implementations

= OSGi alternatives

Dr. Baldzs Simon, BME, IIT

Problems with Java
modularization

Dr. Baldzs Simon, BME, IIT

3>

Java class loading

= Class loaders are descendants of java.lang.ClassLoader

= Default behavior when a class has to be loaded:

= The class loader asks its parent class loader, whether the class is
already loaded

= |f yes: the class is not loaded again
= |f no: the parent class loader asks its own parent, etc.

" If none of the ancestor class loaders knows about the class, only
then will the class be loaded by the original class loader

= \We can write custom class loaders

= Unique identifier of a class: its name + its class loader

= |f two different class loaders load the same class, they are
different classes! (ClassCastException, LinkageError)

Standard Java class loading

java -cp log4j.jar;. sample.Hello

Dr. Baldzs Simon, BME, IIT

Bootstrap load
ClassLoader

| delegate

ClassLoader

: delegate

Application
ClassLoader

Application server class loading

Bootstrap
ClassLoader

Extension
ClassLoader

Application
ClassLoader

EAR ClassLoader

~
S

EJB ClassLoader WAR ClassLoader EJB ClassLoader WAR ClassLoader

Dr. Baldzs Simon, BME, IIT (6)

Modularity
= Modularity:

= encapsulation and information hiding

= Modularity in Java:
= visibility only for classes an methods
" no higher level (package, jar) modularity

= Problems with jar files:
= only meaningful at build-time and deploy-time
" no standard metadata for dependencies
" no standard metadata for versioning
= no mechanism for information hiding

Conflicting classes

java -cp otherlib.jar;mylib.jar;. sample.Hello

= Since otherlib.jar is the first in the otherlib.jar
classpath: always this Hello class will
be loaded

mylib.jar

" The Hello class in mylib.jar is never
used .

= Any change in our class is ineffective

Dr. Balézs Simon, BME, IIT (8)

Conflicting classes

java -cp otherlib.jar;mylib.jar;. sample.Hello

= Since otherlib.jar is the first in the otherlib.jar
classpath: always this Util class will sample.Util
C assparh. _sampletl
= The Util class in mylib.jar is never mylib.jar

used

= Even though it is in our own jar!

= Possible solution: always use unique
hierarchical package names!

= But: what if we have different
versions of the same library?

Dr. Balézs Simon, BME, IIT (9)

Lack of explicit dependencies

= Some jars are standalone
= they do not depend on other libraries

= But most jar files use other libraries
= How do we know which libraries are required?
= Familiar exception at runtime: ClassNotFoundException

= Class-Path entry in the manifest:
= only adds other jars to the classpath
= if the jar is not found: ClassNotFoundException
= How to collect all the required jars?
= Maven can solve this
= But Maven can only load a single version of a dependency!

Dr. Baldzs Simon, BME, IIT

10

Lack of version information

’,m ----- commonlib-1.3.jar
myapp.jar 304
*Am ----- commonlib-2.1.jar

" Problem:
= xlib is only compatible with 1.x versions
= ylib is only compatible with 2.x versions
= Which commonlib version to load?

= We cannot load both:
= The first one in the classpath will hide the classes of the other version!

= This is a very common problem in Java
= especially in application servers

Dr. Balazs Simon, BME, IIT (11)

Application server class loading

Bootstrap
ClassLoader

Extension
ClassLoader

Application
ClassLoader

EAR ClassLoader

~
S

EJB ClassLoader WAR ClassLoader EJB ClassLoader WAR ClassLoader

Dr. Balédzs Simon, BME, IIT (12)

EAR silos

" In order to avoid version conflicts:

= the required libraries must be included in the EAR/WAR lib
folder

= these EAR/WAR files become very heavyweight
" |oading these EARs/WARs is slow and memory consuming

= |f a library can be used by all applications:
" it should be pushed up in the class loader hierarchy tree

= but if it is loaded by the server at startup, it cannot be unloaded
at will, as libraries in EAR/WAR files

= and these classes always take precedence over libraries included
in the EAR/WAR files

13

Lack of information hiding

= Java member visibilities:

= public: visible to everybody

= protected: visible to subclasses and other classes in the same
package

= private: visible only within the class
= no visibility (default): visible within the same package

= Class visibilities: only public and default

= Problem:
= visibilities are defined for packages
= but deployment units are jar files, not packages

= classes are made public so that other packages within the same
jar can see them, but this way other jars will be able to see
them, too

= packages can be split between jars

14

OSGI

Dr. Baldzs Simon, BME, IIT

{15>

OSGi

= Originally: Open Service Gateway initiative
= now much more than just a gateway specification

= General purpose framework
=" Dynamic module system for Java

= Bundle (a module):

= a simple jar file with some additional properties in the
MANIFEST.MF file

= semantic version number
= exports packages
" imports packages

= Bundles can be loaded and unloaded dynamically

16

OSGi layers

{17>

OSGi layers

= Service layer
= communication model for bundles
= decouples service implementation from its interface
" itis a kind of dependency injection

= Life cycle layer
= provides an APl to manage bundles
= installing, updating and uninstalling bundles
= starting and stopping bundles

18

OSGi layers

= Module layer
= strict rules for sharing Java packages between bundles
= hiding packages from other bundles

= Security layer
= based on Java 2 security
= defines a secure packaging format
= runtime interaction with the Java 2 security layer

Dr. Baldzs Simon, BME, IIT

19

OSGi bundle

= Unit of modularity

= Has a life cycle

" Has a strong semantic version number
= Provides services

= Uses other services

= OSGi is like a SOA inside a JVM

= dynamically loading and unloading bundles
= service registry for publishing and finding services

20

Advantages of OSGi

= Enforced modularity
= application structure is clearer

= Declarative dependencies
= simplified building and administration

= Semantic version information
= |ibraries can be shared without risk
= |ibraries can be updated with reduced risk

= Per-module hot updates
= parts of an application can be replaced without any downtime

Dr. Balazs Simon, BME, IIT 21

OSGi bundles

Dr. Baldzs Simon, BME, IIT

{22>

OSGi bundle

= A simple jar file
= packages, classes and other resources

= With additional entries in the
META-INF/MANIFEST.MF
= symbolic name
= semantic version number
= exported packages (with version number)
= imported packages (with version number)
= and other entries...

23

Understanding OSGi bundles

= Java (the JVM) does not understand OSGi entries in the
manifest file

=" Only the OSGi framework can load and understand bundle
manifests

= the OSGi framework is the system bundle which loads other
bundles

= OSGi is like a container in which the bundles can run (analogy:
EJB container)

= OSGi does not work out of the box in any environment:

= the application server itself has to run in an OSGi environment:
the jars of the server have to be OSGi bundles, too

= or somehow the application must deploy an OSGi container with
itself

24

Bundle manifest example

Manifest-Version: 1.0 OSGi manifest version
Bundle-ManifestVersion: 2

Bundle-Symb911cName: org.apache.cxf.cxf-api el S U T
Bundle-Version: 2.7.13

Bundle-Name: Apache CXF API

Bundle-Vendor: The Apache Software Foundation

Export-Package: org.apache.cxf;version="2.7.13",0rg.apache.cxf.annotat
ions;version="2

Import-Package: ovwslf4j;resolution:=optional;version="[1.5,2)",0rg.s

.bind;versgon="[0.06,3)"

Exported packages with version numbers

Imported packages with version numbers

Dr. Balédzs Simon, BME, IIT (25)

OSGi version numbers

<major>.<minor>.<micro>.<qualifier>

= For publishing the bundle or package version

= Semantic version number:
" major, minor, micro: integers
= qualifier: numbers and letters
= examples: 1.0.0, 2.1.7, 1.3.4.build 20140420

= Change in the version number:
= major: breaking APl change
" minor: compatible APl change
= micro: no API change, only bugfixes
= qualifier: no semantics

26

OSGi version ranges

" For referencing a bundle or package version

= A version range:

= [1.0.0,2.0.0) means at least 1.0.0 and up to but not including 2.0.0
= square bracket: inclusive
= round bracket: exclusive

= A single version number:
= means that exact version or any above
= e.g.2.1.3 means “2.1.3 or above”

= No version number:
= means 0.0.0 or above

= |[mport:

= if there are multiple matches, the highest version wins

= if there are still multiple matches: the framework chooses arbitrarily
the bundle with the lowest ID

27

OSGi runtime

=" The OSGi framework is the system bundle

= There is usually an OSGi console, where the bundles can
be managed

= the framework can install, uninstall, update, start and stop
bundles

= each bundle is assigned an ID
" The bundles can also be assigned a start level (non-
negative integer)

= 3 bundle is started when the OSGi framework reaches its start
level

= the framework makes sure that bundles with lower start level
are already started

= the start level is only a runtime management concept, it cannot
be configured in the manifest

28

Bundle lifecycle

install refresh/

update
Installed Starting

start

uninstall

Resolved Active

uninstall

Uninstalled

Stopping

----- * implicit/automatic transition
—p explicit transition

Dr. Baldzs Simon, BME, IIT {29)

Bundle activator

= Activator class:
= called when the bundle is started or stopped

= receives a BundleContext object
= can be used to interact with the OSGi framework

= can register services
= can look up services

= Registering the activator in the manifest file:
" Bundle-Activator entry

Dr. Baldzs Simon, BME, IIT

30

Bundle activator class

package hello;
import org.osgi.framework.BundleActivator;
import org.osgi.framework.BundleContext;

public class Activator implements BundleActivator {
private static BundleContext context;

static BundleContext getContext() {
return context;

}

public void start(BundleContext bundleContext) throws Exception {
Activator.context = bundleContext;
System.out.println("Hello, World!") ;

}

public void stop(BundleContext bundleContext) throws Exception {
System.out.println("Goodbye, World!") ;
Activator.context = null;

}

D}Balézs Simon, BME, IIT 31

Bundle manifest

Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Bundle-Name: Hello
Bundle-SymbolicName: hello
Bundle-Version: 1.0.0.qualifier
Bundle-Activator: hello.Activator
Require-Bundle: org.eclipse.core.runtime
Bundle-RequiredExecutionEnvironment: JavaSE-1.7
Bundle-ActivationPolicy: lazy

Dr. Balazs Simon, BME, IIT

32

BundleContext

= Used for interaction with the OSGi framework:
" l[ook up system-wide configuration properties
= find another installed bundle by its ID
= get a list of all installed bundles
= manipulate other bundles programmatically
= start, stop, update, uninstall, ...
install new bundles programmatically

= register and unregister bundle listeners

= to be notified about bundle changes in the framework
= register and unregister service listeners

= to be notified about service changes in the framework

= register and unregister framework listeners
= to be notified about general events in the framework

Bundle dependencies

mylib-1.0.0.jar

sample.lib.* .

myapp-1.0.0.jar

sample.app.*

sample.lib.impl.*

Manifest-Version: 1.0 Manifest-Version: 1.0
Bundle-ManifestVersion: 2 Bundle-ManifestVersion: 2
Bundle-SymbolicName: mylib Bundle-SymbolicName: myapp

Bundle-Version: 1.0.0.qualifier USEs Bundle-Version: 1.0.0.qualifier
Export-Package: sample.libjvers ¢===== Import-Package: sample.lib;vers
ion="1.0.0" ion="1.0.0"

If at least one of the imports cannot be resolved, the bundle

cannot enter the resolved state and cannot be started!

(There also exists a Require-Bundle entry, but its use is not recommended.)
Dr. Balazs Simon, BME, IIT (34)

Class loading in OSGi

= Every bundle has its own class
loader

= The OSGi framework itself is the
system bundle
= it loads other bundles
= exports JRE packages (e.g. java.*,
javax.*)

= but forwards class loading to the
bootstrap class loader

= this way the environment is
transparent for other bundles

= the list can be extended for future
Java versions

= |n OSGi the class loaders build a
graph, not a tree

Dr. Baldzs Simon, BME, IIT

For non-JRE packages:

Is the package imported?
-> load by the imported bundle

Are there required bundles?
-> |oad by the required bundle

Is it on the current bundle’s
classpath (inside the bundle)?

-> |load from the current bundle
Fragment import?

Dynamic import?

Services

= OSGi is like a SOA inside a JVM

= Services can be published
= a service has an interface
= 3 service can have properties

= Services can be looked up
= by its interface
= can be filtered by its properties

= kind of a dynamic dependency injection
= services can be unloaded and reloaded

36

Service: simple Java

public interface ICalculator {
double add(double left, double right);

¥

public class Calculator implements ICalculator {
@Override

public double add(double left, double right) {
return left+right;

¥
¥

Dr. Baldzs Simon, BME, IIT

37

Registering a service

package hello;

import org.osgi.framework.BundleActivator;
import org.osgi.framework.BundleContext;

public class Activator implements BundleActivator {
@Override
public void start(BundleContext context) throws Exception {
ICalculator calc = new Calculator();
context.registerService(ICalculator.class, calc, null);

}
Service object Properties

@Override
public void stop(BundleContext context) throws Exception {
}

} Unregistration is not required:

performed automatically when the bundle is stopped

Dr. Baldzs Simon, BME, IIT (38)

Looking up a service

BundleContext

public\void calculate() {
ServiceReference<ICalculator> ref =
context.getServiceReference(ICalculator.class);
if (ref != null) {
ICalculator calc = context.getService(ref);
if (calc !'= null) {

try {
double result = calc.add(3.4, 7.8);

System.out.println(result);
} finally {
context.ungetService(ref);

=

¥
}

Dr. Baldzs Simon, BME, IIT (39)

Why two-stage service access?

= A ServiceReference object is a lightweight object
" it can be used to query the properties of the service

= When the service is started to be used, it requires
additional administration by the OSGi framework

=" There are other ways of obtaining services:
= ServiceTracker, ServicelListener

= Declarative Services: configuration files for dependency
injection

Dr. Baldzs Simon, BME, IT 40

OSGi implementations

Dr. Baldzs Simon, BME, IIT

{a1)

Equinox

= Reference implementation of OSGi

= Eclipse is based on Equinox

= IBM WebSphere Application Server is also using Equinox
= Eclipse Public License (EPL)

42

Apache Felix

= Community implementation from Apache

= Designed for compactness
= t0 be able to used in embedded environments

= Dependency injection: Apache Blueprint
= similar to Spring
= XML and annotation support

= Oracle WebLogic uses Apache Felix
= GlassFish also uses Apache Felix
= Apache License

43

Knopflerfish

= Popular and mature implementation

= Developed and maintained by
Makewave AB

* Has a commercially supported edition: Knopflerfish Pro
= BSD license

Dr. Baldzs Simon, BME, IIT

44

OSGi alternatives

Dr. Baldzs Simon, BME, IIT

{45>

Maven

= Jars are handled as modules
= versioning
= declarative dependency

= Maven automatically downloads and uses the appropriate

version of all dependencies
= building Java applications is much easier than before Maven

= Maven is a build system, not a runtime

" it cannot solve the problems of the flat class path and using
multiple versions of the same jar at runtime

= OSGi systems can be built by Maven
= Apache Felix Maven plugin: maven-bundle-plugin
= Bnd tool plugin: bnd-maven-plugin

46

Project Jigsaw

= Java Platform Module System

" Planned for Java 9

= Goal: modularization of the JRE and JDK

= Declarative dependencies between modules
= Only exported packages will be visible

= Packages can be be split between modules

" Internal com.sun.* packages will be hidden

= No multiple versions of the same module at the same time
= this is bad: the jar-hell problem will be transformed to module-hell

" Jigsaw is not recommended for application development, it is
rather for splitting the JRE and JDK into modules

47

