
REST
Szolgáltatásorientált rendszerintegráció

Service-Oriented System Integration

Dr. Balázs Simon

BME, IIT

Outline

 JSON

 HTTP

 REST

 REST principles

 Criticism of REST

 CRUD operations with REST

 RPC operations with REST

 REST interface descriptors
 WSDL 2.0, Swagger, RAML, …

Dr. Balázs Simon, BME, IIT 2

JSON

Dr. Balázs Simon, BME, IIT 3

JSON

 JavaScript Object Notation

 Lightweight data-interchange format

 Easy for humans to read and write

 Easy for machines to parse and generate

 More compact than XML

Dr. Balázs Simon, BME, IIT 4

JSON basic types

 Number: signed decimal
 no separate types for integers and floating point numbers

 String
 double quote quotation, backslash for escaping

 Boolean: true or false

 Array:
 ordered list of zero or more values

 elements can be of any type

 Object:
 unordered collection of name-value (key-value) pairs

 keys must be unique within an object

 null: means no value

Dr. Balázs Simon, BME, IIT 5

JSON example

Dr. Balázs Simon, BME, IIT 6

{
"firstName": "John",
"lastName": "Smith",
"age": 25,
"address":
{

"streetAddress": "21 2nd Street",
"city": "New York",
"state": "NY",
"postalCode": "10021"

},
"phoneNumber":
[

{
"type": "home",
"number": "212 555-1234"

},
{

"type": "fax",
"number": "646 555-4567"

}
]

}

HTTP

Dr. Balázs Simon, BME, IIT 7

HTTP GET

Dr. Balázs Simon, BME, IIT 8

GET /index.html
HTTP/1.1
Host: www.google.com
User-Agent: Mozilla/5.0
Connection: keep-alive

HTTP/1.1 200 OK
Content-Type: text/html; charset=UTF-8
Content-Encoding: gzip
Server: gws
Content-Length: 10200

<!doctype html><html><head>…

Request: Response:
HTTP status code

HTTP GET: http://www.abc.com/login?user=xy&pass=123

Dr. Balázs Simon, BME, IIT 9

GET /login?user=xy&pass=123 HTTP/1.1

Host: www.abc.com

User-Agent: Mozilla/5.0

Connection: keep-alive

HTTP Method Local URL Version

Host name Query paramsHeaders+
Empty line

HTTP POST: http://www.abc.com/login

Dr. Balázs Simon, BME, IIT 10

HTTP Method Local URL Version

Host name HTTP Body:
Post parameters

Headers+
Empty line

POST /login HTTP/1.1

Host: www.abc.com

User-Agent: Mozilla/5.0

Content-Type: application/x-www-form-urlencoded

Content-Length: 16

user=xy&pass=123

REST

Dr. Balázs Simon, BME, IIT 11

REST

 REpresentational State Transfer

 RESTful HTTP

 HTTP protocol extension
 GET, POST, PUT, DELETE

 Input parameters:
 URL part

 URL query string

 POST parameter

 HTTP body

 Result:
 HTTP body

 Very simple: testable by browser

Dr. Balázs Simon, BME, IIT 12

GET examples

 GET /api/movies
 returns all movies

 GET /api/movies/12
 returns the movie with identifier 12

 GET /api/movies/12/actors
 returns the list of actors for the movie with identifier 12

 GET /api/movies?orderby=title
 returns all movies sorted by their titles

Dr. Balázs Simon, BME, IIT 13

GET

 GET is for reading, retrieving resources

 Must not modify any resources!
 HTTP specification for GET

 Input parameters:
 usually in the URL or in query parameter

 identifiers, paging, filtering and sorting criteria

 HTTP body is usually empty

 Output:
 in the HTTP body, usually XML or JSON

 success: 200 (OK)

 error: 404 (Not found) or 400 (Bad request)

Dr. Balázs Simon, BME, IIT 14

POST examples

 POST /api/movies
 creates a new movie

 the content of the movie is passed in the HTTP body:

Dr. Balázs Simon, BME, IIT 15

{
"title": "Batman Begins",
"year": 2005,
"director": "Cristopher Nolan"

}

POST

 POST is for creating new resources
 usually for creating a new item under an existing resource item

 Care must be taken when resending POST requests
 HTTP specification (e.g. credit card transaction)
 the server creates the resource whenever a POST request is made
 multiple identical POST requests may result in more than one

resources with the same content

 Input:
 URL: location of the parent resource
 HTTP body: the content of the child resource to be created

 Output:
 usually the identifier or location (Location HTTP header) of the

resource created
 success: 201 (Created)
 error: 404 (Not found) or 409 (Conflict)

Dr. Balázs Simon, BME, IIT 16

PUT examples

 PUT /api/movies/12
 updates the movie with identifier 12

 or creates a new movie if it does not exist

 the content of the movie is passed in the HTTP body:

Dr. Balázs Simon, BME, IIT 17

{
"title": "Batman Begins",
"year": 2005,
"director": "Cristopher Nolan"

}

PUT

 PUT is for updating a resource
 or creating a new one if it did not exist

 Input:
 URL of the resource to be updated

 the URL contains the identifier of the resource
 this will be the identifier on creation

 so no multiple resources are created when repeating the PUT operation

 HTTP body: the new content of the resource

 Output:
 HTTP body may be empty

 no identifier or location is necessary

 success: 204 (No content), 201 (Created), 200 (OK)

 error: 404 (Not found)

Dr. Balázs Simon, BME, IIT 18

DELETE examples

 DELETE /api/movies/12
 deletes the movie with identifier 12

 DELETE /api/movies/12/actors/65
 deletes the actor 65 from the movie 12

Dr. Balázs Simon, BME, IIT 19

DELETE

 DELETE is for deleting a resource

 Input:
 URL of the resource to be deleted

 the URL contains the identifier of the resource

 HTTP body is usually empty

 Output:
 either an empty HTTP body

 or the content of the deleted resource
 careful with this: it may be very large

 success: 204 (No content) or 200 (OK)

 error: 404 (Not found)

Dr. Balázs Simon, BME, IIT 20

REST parameter passing

Dr. Balázs Simon, BME, IIT 21

Input parameters

 Query parameter:
 http://…/calculator/add?left=3.0&right=5.0

 Path parameter:
 http://…/calculator/add/3.0/5.0

 Matrix parameter:
 http://…/calculator/add;left=3.0;right=5.0

 POST parameter:
 http://…/calculator/add
 like the query parameter but inside the HTTP body

 HTTP body:
 a serialized resource (e.g. in XML or JSON)

 Expected result data format: HTTP “Accept” header
 for XML: application/xml
 for JSON: application/json

Dr. Balázs Simon, BME, IIT 22

Output result

 In HTTP body

 Actual data format: HTTP “Content-Type” header
 or if the server could not support the requested data format:

HTTP 406 (Not acceptable)

 Usual data formats:
 XML

 JSON

Dr. Balázs Simon, BME, IIT 23

XML result

Dr. Balázs Simon, BME, IIT 24

> GET /RestApp1/resources/person/getpb HTTP/1.1
> User-Agent: curl/7.20.1 (i686-pc-cygwin) …
> Host: localhost:8080
> Accept: application/xml
>
< HTTP/1.1 200 OK
< X-Powered-By: Servlet/3.0
< Server: GlassFish Server Open Source Edition 3.0.1
< Content-Type: application/xml
< Content-Length: 227
< Date: Sun, 13 Mar 2011 12:21:17 GMT
<
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<person><name>Peter Bishop</name><age>27</age>
<friends><name>Olivia Dunham</name><age>26</age></friends>
<friends><name>Bolivia Dunham</name><age>26</age></friends>
</person>

curl -v -X GET -H"Accept: application/xml"
http://localhost:8080/RestApp1/resources/person/getpb

XML result

Dr. Balázs Simon, BME, IIT 25

> GET /RestApp1/resources/person/getpb HTTP/1.1
> User-Agent: curl/7.20.1 (i686-pc-cygwin) …
> Host: localhost:8080
> Accept: application/json
>
< HTTP/1.1 200 OK
< X-Powered-By: Servlet/3.0
< Server: GlassFish Server Open Source Edition 3.0.1
< Content-Type: application/json
< Transfer-Encoding: chunked
< Date: Sun, 13 Mar 2011 12:21:19 GMT
<
{"name":"Peter Bishop","age":"27",
"friends":[{"name":"Olivia Dunham","age":"26"},
{"name":"Bolivia Dunham","age":"26"}]}

curl -v -X GET -H"Accept: application/json"
http://localhost:8080/RestApp1/resources/person/getpb

REST principles

Dr. Balázs Simon, BME, IIT 26

REST principles

 Identifying resources

 Linking things

 CRUD operations

 Multiple data representation

 Stateless communication

Dr. Balázs Simon, BME, IIT 27

Identifying resources

 URI: Universal Resource Identifier
 base of resource identification (URN, URL)

 URN: Universal Resource Name
 URI that does not contain location information
 e.g. urn:isbn:0307346617
 pro: valid forever
 con: contain no information on their resolution

 URL: Universal Resource Locator
 URI that contains location information
 con: may not be valid forever, especially if they contain

technology-specific parts, e.g.
http://someserver.com/ActionServlet?blah=blah

 but they can be used correctly, e.g.
http://company1.com/customer/123456

Dr. Balázs Simon, BME, IIT 28

Identifying resources

 Use URLs!
 unique identifier for the resource

 easy to resolve due to the location information

 should be independent of the underlying technology

 Examples for resources:
 documents (blogs, news, etc.)

 data (calculation result, metadata, etc.)

 services (SOAP web service, REST, etc.)

 concepts (people, organizations, etc.)

Dr. Balázs Simon, BME, IIT 29

Linking things

 URLs must be chosen carefully

 Has a lot of advantages:
 easy to forward

 resource behind it can be accessed later

 analogy: C++ pointers

 more secure: easier to configure access rights to the resource

Dr. Balázs Simon, BME, IIT 30

Processing URLs

 URL seems hierarchic

 Client:
 should not process the contents of an URL

 should only use it as a reference

 like browsers

 the structure of the URL may change by time

 Hence, no need for interface description

 The four basic operations are enough for handling
resources: GET, POST, PUT, DELETE

Dr. Balázs Simon, BME, IIT 31

Standard operations on resources

 CRUD: create, read, update, delete

 Properties (from the HTTP specification):
 safe: the client only retrieves data, it is not responsible for side

effects

 idempotent: repeating the same operation results in the same
state

 Repeating different idempotent operations may result in
different results
 e.g. read-delete-read

 Repeating operations without side effects has the same
results

Dr. Balázs Simon, BME, IIT 32

Standard operations

CRUD safe idempotent cacheable

GET read yes yes yes

POST create no no no

PUT
update/
create

no yes no

DELETE delete no yes no

Dr. Balázs Simon, BME, IIT 33

POST: the servers assigns the identifier
PUT: the client assigns the identifier

Multiple data representation

 HTML:
 only for humans
 structure may often change
 computers require more formal representation (e.g. XML, JSON)

 The client should be able to choose between the
representations

 A possible but bad solution:
 http://company1.com/2009/report.html
 http://company1.com/2009/report.xml
 http://company1.com/2009/report.xls

 Correct solution: “Accept” HTTP header, e.g.
 GET /2009/report HTTP/1.1
Host: company1.com
Accept: application/xml

 If the server does not support it, it may send: HTTP 406 Error

Dr. Balázs Simon, BME, IIT 34

Stateless communication

 REST is stateless

 But the application may have a state:
 stored in a resource (not in memory)

 stored on the client side (always sent to the server)

 Advantage:
 scalability: no session required on the server side

 different server instances may serve the same client with serial
requests

 server instances can be stopped and restarted

Dr. Balázs Simon, BME, IIT 35

Criticism of REST

Dr. Balázs Simon, BME, IIT 36

REST criticism

 Only usable for CRUD operations

 No interface description

 Reveals too many internal details

 Lack of design guidelines

 Lack of middleware functions

 No publish-subscribe and asynchronous communication

Dr. Balázs Simon, BME, IIT 37

Only usable for CRUD operations

 It can be used for other operations, e.g.:
 http://example.com/sum?a=2&b=3

 But this is cheating:
 the URI must uniquely identify the resource

 No cheating:
 the resource is the sum of two and three

 Question: which HTTP method to use?
 GET is sufficient: cacheable, no side effect, safe, idempotent

 But: usually we need side effects. Which HTTP method to
use in this case?
 POST
 the server can respond with a URI pointing to the result
 the result can be retrieved by a redirect, it is reusable, cacheable

Dr. Balázs Simon, BME, IIT 38

No interface description

 Interface description:
 describes the operation and their parameters
 no semantics
 used for: generating client proxy and server skeleton

 REST:
 only 4 operations
 data: usually in XML (can be checked by XSD), or in JSON

 Recommended solution:
 textual description about the semantics of the operations
 e.g. description in HTML for a GET

 There are formal descriptors:
 WADL (Web Application Description Language), WSDL 2.0, Swagger,

RAML, …
 but they are not widely supported (e.g. .NET does not support them)

Dr. Balázs Simon, BME, IIT 39

Reveals too many internal details

 Mapping a database to REST shows the database structure

 REST does not mean that the inner database
representation must be published
 REST should have a protective logic before accessing the

database

 REST is data centric instead of operation centric

 Rule: publish the resources through a URI
 they can be protected easier

 Other operations besides CRUD
 these can be as complex as a SOAP or RPC call

 can execute business logic and protect the database

Dr. Balázs Simon, BME, IIT 40

Lack of design guidelines

 No official best-practices

 No standard solution for the usual tasks

 No recommendation for transforming existing services to
REST

 No recommendation for the URI format

 These critics are not true anymore
 there are guidelines

 not standard, but quasi-standard

Dr. Balázs Simon, BME, IIT 41

Lack of middleware aspects

 No transactions:
 true

 No security:
 message-level security: true
 point-to-point security: there is HTTPS

 but: don’t pass parameters in the URL

 No reliable messaging
 we cannot be sure whether the operation succeeded
 if HTTP 200 OK: we know it’s a success
 if no answer: we can’t be sure
 but: idempotent operations (GET, PUT, DELETE) can be resent
 we have to be careful with POST

 These critics are true, but REST was never designed for these
 use SOAP and WS-* when these middleware aspects are required

Dr. Balázs Simon, BME, IIT 42

No publish-subscribe and asynchronous communication

 REST: client-server model

 Publish-subscribe:
 RSS is a possible solution

 GET operation, can be cached

 but: the client is the initiator

 notification-by-polling

 Asynchrnonous operations:
 if the server has to perform a long task

 solution: reply with HTTP 202 Accepted

 responses:
 the server can return the URI of the result, the client can poll at this URI

 the client passes a URI to the server, the server can send the result here

Dr. Balázs Simon, BME, IIT 43

CRUD operations with
REST

Dr. Balázs Simon, BME, IIT 44

CRUD operations

 POST: creating a new resource (create)

 GET: retrieving resources (read)

 PUT: updating a resource (update)
 PATCH: partially updating a resource

 but PATCH is not widely supported

 DELETE: deleting a resource (delete)

Dr. Balázs Simon, BME, IIT 45

Resource types

 Collection (~ database table)
 a collection of instances

 e.g. /api/movies, /api/movies/12/actors

 Instance (~ database record)
 a single entity with attributes and values

 selected from a collection by its identifier

 e.g. /api/movies/12, /api/movies/12/actors/53

 (Database is only an analogy! Do not publish a database
directly through REST!)

Dr. Balázs Simon, BME, IIT 46

GET: read

 GET /api/movies
 returns all the movies

 GET /api/movies/12
 returns the movie with identifier 12

Dr. Balázs Simon, BME, IIT 47

DELETE: delete

 DELETE /api/movies/12
 deletes the movie with identifier 12

 DELETE /api/movies
 deletes all movies

 often not intended: do not use it!

Dr. Balázs Simon, BME, IIT 48

PUT: full update or create

 PUT /api/movies/12
 updates the movie with identifier 12

 full update: the resource will be completely replaced
 question: how to make partial updates?

 PATCH method? it is not widely supported...

 or creates a movie with identifier 12 if it does not exists

Dr. Balázs Simon, BME, IIT 49

POST: create or partial update

 POST /api/movies
 creates a new movie

 identifier is assigned by the server

 the identifier or the new resource should be returned

 POST /api/movies/12
 invalid for creation: the server should assign the identifier

 but it can be used for partial update: only the fields sent in the
request will be updated
 the updated resource should be returned

Dr. Balázs Simon, BME, IIT 50

RPC operations with REST

Dr. Balázs Simon, BME, IIT 51

RPC with REST

 REST is not designed for RPC
 REST is for handling resources

 But: REST can be used for RPC
 Request:

 always POST
 other HTTP methods are not used

 wrapper message in the HTTP body for the operations of the service
 root name: the name of the operation
 children of the root: parameters of the operation

 other parameter passing methods are not used

 Response:
 wrapper message containing the single return result

 Like SOAP document/wrapped but without the SOAP envelope
 Interface description:

 interface must be documented
 provide XSD for the clients

Dr. Balázs Simon, BME, IIT 52

RPC service example

Dr. Balázs Simon, BME, IIT 53

struct Complex
{
double Re;
double Im;

}

interface Calculator
{
Complex Add(Complex left, Complex right);
Complex Subtract(Complex left, Complex right);
Complex Multiply(Complex left, Complex right);
Complex Divide(Complex left, Complex right);

}

REST request example

 Recommended:
 POST /api/calculator/Add

 POST /api/calculator/Subtract

 etc.

 HTTP body:

Dr. Balázs Simon, BME, IIT 54

<Add>
<left>
<Re>4.5</Re>
<Im>3.1</Im>

</left>
<right>
<Re>7.2</Re>
<Im>9.3</Im>

</right>
</Add>

{
"left": {
"Re": "4.5",
"Im": "3.1"

},
"right": {
"Re": "7.2",
"Im": "9.3"

}
}

REST response example

 HTTP body:

Dr. Balázs Simon, BME, IIT 55

<AddResponse>
<AddResult>
<Re>11.7</Re>
<Im>12.4</Im>

</AddResult>
</AddResponse>

{
"AddResult": {
"Re": "11.7",
"Im": "12.4"

}
}

REST interface
descriptors

Dr. Balázs Simon, BME, IIT 56

REST interface descriptors

 No standard and widely supported interface descriptor,
but there are a lot of initiatives

 WSDL 2.0, WADL
 neither is widely adopted
 mostly because of poor human readability

 OpenAPI (formerly Swagger)
 open-source, language agnostic, extensible into new technologies and protocols

beyond HTTP
 code generators for many languages
 very popular
 no built-in support in WCF and JAX-RS

 RAML (RESTful API Modeling Language)
 general API description language
 more readable than Swagger
 good for designing an API from scratch

 Swagger is best suited to documenting existing API

 no built-in support in WCF and JAX-RS

 API Blueprint
 good for designing an API from scratch

 …
Dr. Balázs Simon, BME, IIT 57

Swagger example

Dr. Balázs Simon, BME, IIT 58

{

"swaggerVersion": "1.2",

"basePath": "http://localhost:8000/greetings",

"apis": [

{

"path": "/hello/{subject}",

"operations": [

{

"method": "GET",

"summary": "Greet our subject with hello!",

"type": "string",

"nickname": "helloSubject",

"parameters": [

{

"name": "subject",

"description": "The subject to be greeted.",

"required": true,

"type": "string",

"paramType": "path"

}

]

}

]

}

],

"models": {}

}

RAML example

Dr. Balázs Simon, BME, IIT 59

#%RAML 1.0
title: GitHub API
version: v3
baseUri: https://api.github.com
mediaType: application/json
securitySchemes:
oauth_2_0: !include securitySchemes/oauth_2_0.raml

types:
Gist: !include types/gist.raml
Gists: !include types/gists.raml

resourceTypes:
collection: !include types/collection.raml

traits:
securedBy: [oauth_2_0]
/search:
/code:
type: collection
get:

