
Enterprise Service Bus (ESB),
Message Queuing (MQ)

Szolgáltatásorientált rendszerintegráció

Service-Oriented System Integration

Dr. Balázs Simon

BME, IIT

Outline

 Integration requirements

 Enterprise Service Bus

 Message Queuing

Dr. Balázs Simon, BME, IIT 2

Integration requirements

Dr. Balázs Simon, BME, IIT 3

System integration: within an enterprise

4

Oracle

DB

JEE

MySQL

PHPSQL

Server

.NET

SAP

?

FTP e-mail

?

??

?

?

?

?

?

?

Dr. Balázs Simon, BME, IIT

System integration challenges

 Different levels:
 database, business, web, …

 Different vendors:
 Microsoft, IBM, Oracle, SAP, …

 Different technologies:
 .NET, Java, C++, SAP, legacy systems, …

 Different protocols
 SOAP, HTTP, FTP, SMTP, …

 Different reliability and availability

Dr. Balázs Simon, BME, IIT 5

Enterprise Application Integration

 EAI: Enterprise Application Integration

 Data integration:
 consistent information across multiple systems

 Business process integration:
 reusing and automating business processes

 Vendor independence:
 replaceable components to prevent vendor lock-in

 Common façade:
 provide a single consistent access interface shielding the users

from the internal details

Dr. Balázs Simon, BME, IIT 6

EAI patterns

 Mediation (intra-communication)
 integration within the enterprise

 broker between different internal systems

 Federation (inter-communication)
 integration with the outside world

 shield internal systems from external details

 expose only relevant information to the world

Dr. Balázs Simon, BME, IIT 7

Integration tasks

 Protocol conversion

 Data format conversion

 Messaging middleware

 Message routing and transformation

 Middleware and other quality of service (QoS)

 Business processes

 Human tasks

 Complex event processing

 Administration and management

Dr. Balázs Simon, BME, IIT 8

Enterprise Service Bus
(ESB)

Dr. Balázs Simon, BME, IIT 9

Enterprise Service Bus (ESB)

 Realization of the enterprise integration tasks

 Implements the SOA

 It is not a standard, it is a product!
 every vendor has it’s own

 danger of vendor lock-in

 Standardization initiatives:
 Java Business Integration (JBI): it is dying

 Service Component Architecture (SCA):
 it is winning, but it does not cover a full ESB

 language independent, but it is only adopted in the Java world

 There is no widely adopted vendor independent standard

Dr. Balázs Simon, BME, IIT 10

Properties of an ESB

 Bus topology

 Hides differences among underlying platforms, software
architectures, and network protocols

 Provides adapters between different protocols and data
formats

 Message-oriented middleware, message transformation
and routing

 Quality of Service (QoS): security, reliability, ...

 Service orchestration and service composition

 Incremental implementation and deployment

 Central monitoring and management

Dr. Balázs Simon, BME, IIT 11

SOAP REST FTPSMTPCORBA

ESB

12

DB File JavaBPEL .NET

event handling

service
composition

monitoring and
management

routing

transformation

messaging

message-oriented
middleware

Dr. Balázs Simon, BME, IIT

Bus topology

 The ESB is a central entity

 Every participant is connected to the bus
 no direct connection between the participants

 The bus provides a common message format

 Number of conversions: O(n)
 with direct connections it would be: O(n2)

Dr. Balázs Simon, BME, IIT 13

Hides differences

 Can handle different vendors, platforms and technologies
 .NET, Java, C++, SAP, …

 Can handle different protocols
 HTTP, SOAP, FTP, SMTP, …

 Can handle different application levels
 databases, business, web, …

Dr. Balázs Simon, BME, IIT 14

Adapters

 Adapters for:
 communication protocols

 HTTP, SOAP, FTP, SMTP, …

 data format conversions
 text, XML, JSON, relational DB, …

 platforms and legacy systems
 .NET, Java, COBOL, C++, …

 message exchange patterns
 request-response, one-way, publish-subscribe, …

 Transforming data and messages to internal normalized
messages

Dr. Balázs Simon, BME, IIT 15

Message-oriented middleware (MOM)

 Provides a reliable connection between the participants

 Handles internal normalized messages

 Queues and holds messages

 Message routing and transformation

 Backed by a message queuing system
 guaranteed transactional message delivery

 point-to-point and publish-subscribe models

Dr. Balázs Simon, BME, IIT 16

Quality of Service (QoS)

 Security
 authentication and authorization

 encryption and digital signature for external services and clients

 Reliability
 an ESB is backed by a reliable MOM

 Availability

 Performance

 Transactions

Dr. Balázs Simon, BME, IIT 17

Service orchestration

 Available services through the ESB:
 services within the enterprise

 external services

 legacy systems, data sources, data protocols

 Services can be combined into more complex services
 orchestration

 migration

 regularly executed tasks

 business logic (see business processes later…)

Dr. Balázs Simon, BME, IIT 18

Incremental migration

 Legacy systems, data sources, protocols can be
incrementally connected to the ESB

 Services and combined services can be incrementally
developed and installed

 Existing connections between legacy systems can be
incrementally migrated to the ESB

 Hence, with the use of ESB, SOA can be incrementally
introduced within the enterprise

Dr. Balázs Simon, BME, IIT 19

Monitoring and management

 Service repository

 Service versioning

 Central administration

 Central configuration

 Runtime monitoring

 User management and access control

 Complex event processing

Dr. Balázs Simon, BME, IIT 20

ESB pros and cons

 Advantages:
 increased flexibility

 enterprise-wide scalability
(bus topology instead of point-to-point services)

 configuration instead of coding

 loosely coupled system

 easy plug-in

 Disadvantages:
 vendor lock-in

 complexity

 increased overhead

Dr. Balázs Simon, BME, IIT 21

ESB products

 Microsoft:
 BizTalk + WCF

 IBM:
 IBM Integration Bus (successor of WebSphere Message Broker

and WebSphere ESB)

 Oracle:
 Oracle Service Bus

 JBoss:
 SwitchYard (based on Apache Camel) for WildFly

 Apache:
 Camel

Dr. Balázs Simon, BME, IIT 22

Message Queuing (MQ)

Dr. Balázs Simon, BME, IIT 23

Message Queuing (MQ)

 Producers send messages to queues

 Consumers receive messages from queues

 Message broker:
 manages queues

 provides guaranteed message delivery

 transactional send and receive

 Asynchronous communication

 Producers and consumers don’t know each other, they
only know queues

Dr. Balázs Simon, BME, IIT 24

Message queuing advantages

 Loose coupling:
 producers and consumers don’t know each other directly, they

only know queues

 Reliability:
 messages are stored before forwarded, they are guaranteed to

be delivered

 Scalability:
 producers and consumers scale independently

 they can produce and consume messages at any rate

 Availability:
 simultaneous availability is not required for producers and

consumers

Dr. Balázs Simon, BME, IIT 25

Messaging models

 Point-to-point:
 FIFO queue

 multiple producers

 usually one consumer

 each message is delivered once to one consumer

 Publish-subscribe:
 topic or channel

 multiple consumers (called subscribers)

 usually a single producer (called publisher)

 each message is delivered once to every available subscriber

Dr. Balázs Simon, BME, IIT 26

Point-to-point

Dr. Balázs Simon, BME, IIT 27

queue

consumer

message message message

consumer

consumer

producer

producer

Publish-subscribe

Dr. Balázs Simon, BME, IIT 28

topic

subscriber
(attached)

message message message

publisher

publisher

subscriber
(detached)

subscriber
(attached)

subscriber
(attached)

Point-to-point vs. publish-subscribe

Point-to-point Publish-subscribe

a message is received
by only one consumer

a message is received
by all consumers

single consumer broadcast

messages delivered when
the consumer is online

messages delivered only
for those consumers who

are online

simple complex

not so flexible flexible

Dr. Balázs Simon, BME, IIT 29

Queue types

 Public queue: public access

 Private queue: requires authentication for accessing the
queue

 Temporary queue: created only for a short time period

 Journal queue: keeps a copy of every message placed
within it

 Connector/bridge queue: connects two message queuing
systems

 Dead-letter/dead-message queue: expired or
undeliverable messages are put here

Dr. Balázs Simon, BME, IIT 30

Message-oriented middleware (MOM)

 Built on top of an MQ

 Provides message transformation
 transformation between different message formats

 enriching messages with additional information

 Provides message routing
 conditionally forwarding messages to different queues based on

the message content

Dr. Balázs Simon, BME, IIT 31

MQ products

 Microsoft:
 Microsoft Message Queuing (MSMQ)

 Java Message Service (JMS):
 IBM WebSphere MQ

 Oracle Advanced Queuing (AQ)

 JBoss HornetQ

 Apache ActiveMQ

Dr. Balázs Simon, BME, IIT 32

Java Message Service
(JMS)

Dr. Balázs Simon, BME, IIT 33

Java Message Service (JMS)

 Message queuing API in Java

 Only an API, implementation is vendor-specific

 Messaging models:
 point-to-point: Queue

 publish-subscribe: Topic

 JNDI: queues, topics and connection factories
 usually registered in server configuration

 JMS 2.0: introduced in JavaEE 7

Dr. Balázs Simon, BME, IIT 34

JMS 1.1 programing model

Dr. Balázs Simon, BME, IIT 35

Connection
Factory

Connection

Session
Message
Producer

Message
Consumer

Destination

Message
Message
Listener

sends to
receives from
(synchronous)

registers

creates

creates

creates creates

creates

Destination
receives from
(asynchronous)

JNDI lookup
or

Resource injection

JMS 1.1 send example

Dr. Balázs Simon, BME, IIT 36

public class JmsSender {
@Resource(lookup = "jms/ConnectionFactory")
private static ConnectionFactory connectionFactory;
@Resource(lookup = "jms/HelloQueue")
private static Queue queue;

public void sendHello() {
try {

Connection connection = connectionFactory.createConnection();
try {

Session session = connection.createSession(false,
Session.AUTO_ACKNOWLEDGE);

MessageProducer producer = session.createProducer(queue);
TextMessage message = session.createTextMessage();
message.setText("hello");
producer.send(message);

} finally { connection.close(); }
} catch (Exception e) { e.printStackTrace();}

}
}

JMS 1.1 receive example

Dr. Balázs Simon, BME, IIT 37

public class JmsReceiver {
@Resource(lookup = "jms/ConnectionFactory")
private static ConnectionFactory connectionFactory;
@Resource(lookup = "jms/HelloQueue")
private static Queue queue;
public void receiveHello() {
try {

Connection connection = connectionFactory.createConnection();
try {

Session session = connection.createSession(false,
Session.AUTO_ACKNOWLEDGE);

MessageConsumer consumer = session.createConsumer(queue);
connection.start();
Message message = consumer.receive();
if (message instanceof TextMessage) {
TextMessage text = (TextMessage)message;
System.out.println(text.getText());

}
} finally { connection.close(); }

} catch (Exception e) { e.printStackTrace(); }
}

}

JMS 1.1 MessageListener example

Dr. Balázs Simon, BME, IIT 38

public class JmsListener implements MessageListener {
public void register() {
try {

InitialContext ic = new InitialContext();
ConnectionFactory connectionFactory =

(ConnectionFactory)ic.lookup("jms/ConnectionFactory");
Queue queue = (Queue)ic.lookup("jms/HelloQueue");
Connection connection = connectionFactory.createConnection();
try {

Session session = connection.createSession(false,
Session.AUTO_ACKNOWLEDGE);

MessageConsumer consumer = session.createConsumer(queue);
consumer.setMessageListener(this);
connection.start();
// TODO: wait until messages are processed...

} finally { connection.close(); }
} catch (Exception e) { e.printStackTrace(); }

}
@Override
public void onMessage(Message message) {
// ...

JMS 1.1 Message-driven bean example

Dr. Balázs Simon, BME, IIT 39

@MessageDriven(mappedName="jms/HelloQueue", activationConfig = {
@ActivationConfigProperty(propertyName = "acknowledgeMode",

propertyValue = "Auto-acknowledge"),
@ActivationConfigProperty(propertyName = "destinationType",

propertyValue = "javax.jms.Queue")
})

public class JmsListenerBean implements MessageListener {
@Resource
private MessageDrivenContext mdc;

@Override
public void onMessage(Message message) {
TextMessage text = null;
try {
if (message instanceof TextMessage) {

text = (TextMessage) message;
System.out.println(text.getText());

}
} catch (Exception e) { e.printStackTrace(); }

}
}

JMS 2.0 programing model

Dr. Balázs Simon, BME, IIT 40

Connection
Factory

JMSContext

JMSConsumer

Destination

sends to
receives from
(synchronous)

creates

creates

Destination

JNDI lookup
or

Resource injection

Context injection

JMSProducer

creates

Message
Listener

registers

receives from
(asynchronous)

JMS 2.0 send example

Dr. Balázs Simon, BME, IIT 41

public class JmsSender2 {
@Resource(lookup = "jms/ConnectionFactory")
private static ConnectionFactory connectionFactory;
@Resource(lookup = "jms/HelloQueue")
private static Queue queue;

public void sendHello() {
try (JMSContext context = connectionFactory.createContext()) {
JMSProducer producer = context.createProducer();
producer.send(queue, "hello");

} catch (Exception ex) {
System.out.println(ex);

}
}

}

JMS 2.0 receive example

Dr. Balázs Simon, BME, IIT 42

public class JmsReceiver2 {
@Inject
@JMSConnectionFactory("jms/ConnectionFactory")
private JMSContext context;
@Resource(mappedName = "jms/HelloQueue")
private Queue queue;

public void receiveHello() {
try {
JMSConsumer consumer = context.createConsumer(queue);
String text = consumer.receiveBody(String.class);
System.out.println(text);

} catch (Exception ex) {
System.out.println(ex);

}
}

}

JMS 2.0 MessageListener example

Dr. Balázs Simon, BME, IIT 43

public class JmsListener2 implements MessageListener {
public void register() {
try {

InitialContext ic = new InitialContext();
ConnectionFactory connectionFactory =

(ConnectionFactory)ic.lookup("jms/ConnectionFactory");
Queue queue = (Queue)ic.lookup("jms/HelloQueue");
try (JMSContext context = connectionFactory.createContext()) {
JMSConsumer consumer = context.createConsumer(queue);
consumer.setMessageListener(this);
// TODO: wait until messages are processed...

}
} catch (Exception e) { e.printStackTrace(); }

}

@Override
public void onMessage(Message message) {
// ...

Microsoft Message
Queuing (MSMQ)

Dr. Balázs Simon, BME, IIT 44

Microsoft Message Queuing (MSMQ)

 Message queuing in Windows
 MSMQ service has to be installed in the Control Panel

 .NET library: System.Messaging.dll

 Messaging models:
 only point-to-point: MessageQueue

 no publish-subscribe

Dr. Balázs Simon, BME, IIT 45

MSMQ queue naming

Dr. Balázs Simon, BME, IIT 46

Queue type Syntax

Public queue MachineName\QueueName

Private queue MachineName\Private$\QueueName

Journal queue MachineName\QueueName\Journal$

Machine journal queue MachineName\Journal$

Machine dead-letter queue MachineName\Deadletter$

Machine transactional dead-letter queue MachineName\XactDeadletter$

MSMQ programing model

Dr. Balázs Simon, BME, IIT 47

Message
Queue

Message

sends receives

Queue in
MSMQ

represents

MSMQ queue management

Dr. Balázs Simon, BME, IIT 48

// Creating a new queue:
MessageQueue.Create(@".\HelloQueue");

// Checking if queue exists:
if (MessageQueue.Exists(@".\HelloQueue"))
{

// ...
}

// Deleting a queue:
MessageQueue.Delete(@".\HelloQueue");

MSMQ send example

Dr. Balázs Simon, BME, IIT 49

// Create a queue representation:
MessageQueue queue =

new MessageQueue(@".\HelloQueue");

// Send message:
queue.Send("hello");

// Or a Message object:
Message message = new Message("hello");
queue.Send(message);

MSMQ receive example

Dr. Balázs Simon, BME, IIT 50

// Create a queue representation:
MessageQueue queue =

new MessageQueue(@".\HelloQueue");

// Receive message:
Message message = queue.Receive();
string text = (string)message.Body;

WCF with MSMQ

 WCF also supports MSMQ

 SOAP over MSMQ:
 binding: netMsmqBinding

 URL scheme: net.msmq://

 Native MSMQ messages:
 binding: msmqIntegrationBinding

 endpoint address:
msmq.formatname:DIRECT=OS:queuename

 operation parameter: MsmqMessage<...>

Dr. Balázs Simon, BME, IIT 51

