
Designing, developing and
testing services

Szolgáltatásorientált rendszerintegráció

Service-Oriented System Integration

Dr. Balázs Simon

BME, IIT

Outline

 Interface design guidelines

 Web service guidelines

 REST guidelines

 Versioning guidelines

 Testing services

Dr. Balázs Simon, BME, IIT 2

Interface design
guidelines

Dr. Balázs Simon, BME, IIT 3

Stateless service

 Design the interface for stateless interaction

 Server side should not store state in memory

 Solutions:
 store state in persistent storage (e.g. database) on the server

side, transfer identifiers between the client and server

 store state on the client side and transfer it in every call

 Stateless applications scale better

4Dr. Balázs Simon, BME, IIT

Synchronous and asynchronous calls

 Synchronous call: client waits for the result

 Asynchronous call: client starts the process and continues

 Do not mix synchronous and asynchronous calls in a single
interface

 Define separate interfaces instead

 Long running activities with synchronous calls:
 start the activity in background or throw an exception

 return immediately from the operation

 the client can access/get the result later

5Dr. Balázs Simon, BME, IIT

Exceptions

 Define exceptions (faults)

 Use request-response operations

 Throw exception if the request cannot be completed

 Use both error codes and textual description in exceptions
 Error code: for automatic processing

 Textual description: for humans
 also include information to resolve the problem

6Dr. Balázs Simon, BME, IIT

Implementation-specific parameters

 Avoid putting implementation-specific parameters into
the interface

 Use only general data types

 Use only general identifiers

 Do not publish:
 internal identifiers

 special data types

 special encodings

7Dr. Balázs Simon, BME, IIT

Granularity

 Fine-grained operations:
 each query returns a small portion of data

 lot’s of calls are required

 Coarse-grained operations:
 a single query returns all the data

 lot’s of unnecessary data transferred

 Recommendation:
 use general, reusable operations

 lean toward coarse-grained operations, since the network
overhead may be large

8Dr. Balázs Simon, BME, IIT

Overloading

 Overloading: same operation name with different
parameter types

 Do not use overloading in interfaces

 Do not use templates and generics in interfaces

 Overloads and generics cannot be mapped universally to
any programming language

9Dr. Balázs Simon, BME, IIT

Responsibilities

 Define separate interfaces for different responsibilities

 If the operations of an aspect changes, only the
corresponding interface will change

 Avoid gaps and overlaps between interfaces

10Dr. Balázs Simon, BME, IIT

Paging large lists

 Large messages have a large runtime overhead

 If a list is returned, think about its size

 If returned lists can become large, provide paging for the
results

 State must be preserved somewhere

11Dr. Balázs Simon, BME, IIT

Changes

 If an interface changes:
 either make it backwards compatible

 or create a new interface and also provide access through the
old one until all the clients are updated

 Use interface versioning

 Use a service repository for storing different versions

12Dr. Balázs Simon, BME, IIT

Web service guidelines

Dr. Balázs Simon, BME, IIT 13

Development patterns

 Bottom-up: start with code to produce WSDL

 Top-down: start with WSDL to produce Java

 Round-trip: start with code/WSDL to produce WSDL/code,
and repeat the cycle

Dr. Balázs Simon, BME, IIT 14

Bottom-up steps

 1. Annotate data types

 2. Annotate service interface

 3. Implement the service interface

 4. Generate WSDL from the annotated classes
 JDK: wsgen

 Apache Axis2: java2wsdl

 .NET: SvcUtil

 5. Generate client from the generated WSDL

Dr. Balázs Simon, BME, IIT 15

Bottom-up strategy

 Advantages:
 quick way to publish services
 requires no knowledge of the WSDL
 excellent tool support

 Disadvantages:
 server side source classes may contain business logic, which

won’t be transferred to the client side
 client and server cannot be developed in parallel
 incremental changes are difficult to manage, since the interfaces

can easily become out of sync
 server side interface: code
 client side interface: WSDL

 XML namespaces are generated from source
packages/namespaces
 if the source code is refactored, the interface will break

Dr. Balázs Simon, BME, IIT 16

Top-down steps

 1. Create XSD for data types

 2. Create WSDL for the service interface

 3. Generate server side and client side code from the
WSDL
 JDK: wsimport

 Apache Axis2: wsdl2java

 .NET: SvcUtil

 4. Implement the server side and the client side

Dr. Balázs Simon, BME, IIT 17

Top-down strategy

 Advantages:
 existing XSD files can be reused

 new XSD files can also be reused across services

 parallel and independent development of the server and the
client

 incremental changes are in the WSDL, which is a common
interface

 changes in the WSDL can be made backwards compatible

 package/namespace names in the code are not affected by the
XML namespaces

 Disadvantages:
 requires detailed knowledge of XSD and WSDL

 limited tool support

Dr. Balázs Simon, BME, IIT 18

Round-trip steps

 1. Annotate data types

 2. Annotate service interface

 3. Generate WSDL from the service

 4. Change and maintain the WSDL manually

 5. Generate server side and client side interfaces from the
WSDL

 6. Implement the server and the client

Dr. Balázs Simon, BME, IIT 19

Round-trip strategy

 Advantages:
 easier to create the WSDL with existing tool support

 existing XSD files can be reused

 Disadvantages:
 some source types and XSD types may not fit nicely into the

round-trip method

 the produced WSDL may not be easily reusable and
interoperable

 maintaining the WSDL by hand is still hard

Dr. Balázs Simon, BME, IIT 20

Development pattern guideline

 Use top-down design

 Define the WSDL first

 Advantages:
 implementation has no effect on the interface

 server and client can be developed independently

 But: WSDL is hard to create manually
 recommendation: generate it from models

 or: use graphical tools

21Dr. Balázs Simon, BME, IIT

WSDL version

 WSDL 1.1
 redundant

 widespread

 well supported

 WSDL 2.0
 richer: interface inheritance, reusable bindings

 not very well supported
 supported in many Java frameworks

 not supported in .NET

 Recommendation: WSDL 1.1

Dr. Balázs Simon, BME, IIT 22

SOAP version

 SOAP 1.1
 well supported

 bound to HTTP: SoapAction header

 SOAP 1.2
 well supported

 independent of HTTP

 Recommendation:
 support both of them

Dr. Balázs Simon, BME, IIT 23

SOAP encoding

 RPC/encoded

 RPC/literal

 Document/encoded (doesn’t exist)

 Document/literal

 Document/wrapped (WS-I Compliant)

 Recommendation:
 Document/wrapped: widespread, easy to validate the message

Dr. Balázs Simon, BME, IIT 24

XSD and WSDL

 Choices:
 XSD embedded in the <types> section

 Separate XSD, imported into the WSDL

 Recommendation: separated
 WSDL is smaller and simpler

 XSD is reusable

Dr. Balázs Simon, BME, IIT 25

XSD constraints

 Examples:
 restrictions on primitive types, e.g. e-mail regexp
 choice and all complex types

 Advantages:
 interface is stricter
 can be checked at message level

 Disadvantages:
 cannot be mapped to Java/C# APIs
 have to be maintained

 Recommendation:
 use the sequence complex type
 do not use restrictions
 check constraints at application level

26Dr. Balázs Simon, BME, IIT

Common types and common code

 Types generated from XSD and WSDL

 Should be used on client and server side

 Vendor tools usually generate client side

 Recommendation:
 generate the client files

 put them in a separate project: client library

 always use the same project for the same XSD even if referenced
from multiple WSDLs

 add this project to the server and client side as a dependency if
both of them use the same programming language

27Dr. Balázs Simon, BME, IIT

API

 Programming API for web services

 Recommendation:
 Java world: Java API for XML-based Web Services (JAX-WS)

 .NET world: Windows Communication Foundation (WCF)

 Both of them are type safe

 They map classes to XSD types, interfaces to WSDLs

 JAX-WS implementations have WS-* extensions

 WCF supports WS-* by default

28Dr. Balázs Simon, BME, IIT

REST guidelines

Dr. Balázs Simon, BME, IIT 29

REST

 Designed for resources

 Not for RPC!

 Use nouns:

 Use plural nouns
 movies vs. movie, actors vs. actor

 Not verbs:

Dr. Balázs Simon, BME, IIT 30

http://example.org/movies
http://example.org/movies/58/actors

http://example.org/getMovies
http://example.org/getActorsOfMovie

REST

 Exposing the database directly:
 publishing resources is not the same as exposing the whole

database

 always check the inputs

 always authenticate the clients

 REST for RPC:
 REST can be used for XML/JSON-based RPC

 but only use it for RPC if the operation cannot be performed by
resource operations

 carefully design the service interface

Dr. Balázs Simon, BME, IIT 31

Resource types

 Collection resource

 Instance resource

Dr. Balázs Simon, BME, IIT 32

http://example.org/movies
http://example.org/movies/58/actors

http://example.org/movies/58
http://example.org/movies/58/actors/x1ca5

Behavior

 HEAD = Headers, no body

 GET = Read

 DELETE = Delete

 PUT = Create or Full Update
 client assigns the identifier

 POST = Create or Partial Update
 server assigns the identifier

 return the updated resource in the response

Dr. Balázs Simon, BME, IIT 33

PUT

 Create:

 Full Update:

Dr. Balázs Simon, BME, IIT 34

http://example.org/movies/73

http://example.org/movies/73

{
"title": "Matrix",
"actors": ["Keanu Reeves"]

}

{
"title": "Matrix",
"actors": ["Keanu Reeves", "Carrie-Anne Moss"]

}

POST

 Create:

 Partial Update:

Dr. Balázs Simon, BME, IIT 35

{
"title": "Matrix",
"actors": ["Keanu Reeves"]

}

http://example.org/movies

http://example.org/movies/79

{
"title": "The Matrix"

}

Versioning

 Version number in the URL

 Start versioning already with the initial release

 Use incremental integer version numbers:

 Do not use minor version numbers:

Dr. Balázs Simon, BME, IIT 36

http://example.org/v1/movies
http://example.org/v2/movies

http://example.org/v1.2.3/movies
http://example.org/v2.4.1.snapshot/movies

Result format

 HTTP Accept header:
 application/json
 application/xml

 Optional resource extension (overrides HTTP Accept):
 although not nice, since it is not transparent
 but: great help if testing from a browser

 Formatting the results:
 pretty print messages by default
 and use gzip compression
 again: great help if testing from a browser

 Use camelCase with JSON, since this is the JavaScript
convention

Dr. Balázs Simon, BME, IIT 37

http://example.org/movies.json
http://example.org/movies.xml

Paging of collection resources

 Collection resources can return large lists

 Provide paging by query params:
 offset: how many resources to skip

 limit: maximum number of resources to return

 Examples:

Dr. Balázs Simon, BME, IIT 38

http://example.org/movies?offset=20&limit=10
http://example.org/actors?offset=0&limit=100

Errors

 Use HTTP error codes

 Provide as much additional information as possible:
 error code: for automatic processing

 error message for the developer: provide a resolution for the
error

 error message for the end user: if it should be displayed

 link to the documentation of the error

Dr. Balázs Simon, BME, IIT 39

Security

 Always use HTTPS
 never use plain HTTP!

 Authentication:
 use API keys for authentication

 or resource content (e.g. username-password)

 never use special URLs (search engines may find them)!

 HTTP status codes:
 401 Unauthorized – invalid credentials

 403 Forbidden – valid credentials, but not allowed
(unauthorized)

Dr. Balázs Simon, BME, IIT 40

Identifiers

 Should be opaque

 Should be globally unique

 Avoid sequential numbers
 they can collide (e.g. clients using PUT)

 Use UUIDs

Dr. Balázs Simon, BME, IIT 41

Interface description

 Provide a very detailed documentation
 REST has no formal interface description language

 use Swagger or other popular formal description

 the documentation is essential

 Provide the documentation in HTML
 return it for a GET with Accept: text/html

 If XML is used for data exchange, provide XSD for the
message format

Dr. Balázs Simon, BME, IIT 42

Versioning guidelines

Dr. Balázs Simon, BME, IIT 43

Contract versioning

 Web service interface parts:
 XSD schemas for complex types

 WSDL description for the operations

 WS-* protocols

 Program code interface parts:
 classes for complex types

 interface for the operations

 Versioning:
 complex types

 interface with operations

 protocols

Dr. Balázs Simon, BME, IIT 44

Compatibility

 Backwards compatibility (or compatibility):
 the new version of the provider contract continues to support

consumers designed to work with the old version of the contract

 examples:
 adding a new operation to the service interface

 adding optional elements in the schema

 Forwards compatibility:
 the provider contract is designed so that it can support a range

of future consumer applications

 example:
 adding wildcard elements in the schema (e.g. xsd:any)

Dr. Balázs Simon, BME, IIT 45

Examples for compatible changes

 Adding a new operation to a portType

 Adding a new portType

 Adding new binding and service definitions

 Adding new optional elements to request messages

 Adding wildcards to request messages

 Adding new optional WS-Policy assertions

Dr. Balázs Simon, BME, IIT 46

Examples for incompatible changes

 Renaming an operation in a portType

 Removing an existing operation from the portType

 Adding a new fault to an operation

 Adding new required elements to messages

 Adding optional or wildcard elements to response
messages

 Renaming optional or required elements in messages

 Removing optional or required elements in messages

 Adding new required WS-Policy assertions

Dr. Balázs Simon, BME, IIT 47

Version numbers

 Version numbers could be attributes of elements
 but they are hard to handle dynamically

 handling different versions of different types at the same time
makes the application code very complex

 Version number in the XML namespace
 as a date:
<movie xmlns="http://soi/movie/2015/04">...</movie>

 as an incremental number:
<movie xmlns="http://soi/movie/v2">...</movie>

Dr. Balázs Simon, BME, IIT 48

Versioning strategies

 Strict:
 any compatible or incompatible change results in a new version

 this approach does not support backwards or forwards
compatibility

 Flexible:
 any incompatible change results in a new version

 the contract is designed for backwards compatibility

 this approach does not support forwards compatibility

 Loose:
 any incompatible change results in a new version

 the contract is designed for backwards and forwards
compatibility

Dr. Balázs Simon, BME, IIT 49

Strict versioning

 Any change results in a new contract
 XSD and WSDL target namespace is changed to a new version

 No backwards compatibility

 No forwards compatibility

 Use this strategy, if the service contract has legal
implications

 Advantages:
 full control over the evolution of the service, since compatibility

is not an issue

 Disadvantages:
 existing consumers are no longer compatible with a new version

of the contract
 older versions must be supported as long as there are

consumers who use them

Dr. Balázs Simon, BME, IIT 50

Flexible versioning

 Only an incompatible change results in a new contract
 XSD and WSDL target namespace is changed to a new version

 Retains backwards compatibility

 No forwards compatibility

 Advantages:
 compatible changes can be made
 older versions of the backwards compatible contract do not

have to be maintained

 Disadvantages:
 changes become permanent and cannot be removed without

introducing a new incompatible version
 care must be taken so that contracts do not become bloated or

convoluted

Dr. Balázs Simon, BME, IIT 51

Loose versioning

 Only an incompatible change results in a new contract
 XSD and WSDL target namespace is changed to a new version

 Difference from the previous approaches:
 how the contract is designed initially
 e.g.: xsd:any and xsd:anyAttribute in XSD

 Retains backwards compatibility

 Prepares for forwards compatibility

 Advantages:
 forwards compatibility
 range of acceptable elements can be expanded

 Disadvantages:
 we cannot prepare for any future change
 very complex application logic to handle all the cases
 vague service contracts

Dr. Balázs Simon, BME, IIT 52

Testing services

Dr. Balázs Simon, BME, IIT 53

Custom constructed clients

 Generated from WSDL or the interface is reused from the
server side

 Advantages:
 Can be easily customized

 Can be integrated into unit tests

 Similar to testing a class

 Can use advanced WS-* protocols

 Disadvantages:
 Client code has to be regenerated or updated whenever the

interface changes

 Specific for the given service

Dr. Balázs Simon, BME, IIT 54

General testing tool: SoapUI

 The most popular testing tool

 Open source

 Has all the features of the commercial products

 Features:
 functional testing
 load testing
 mock services
 Web Services
 WS-* protocols: WS-Addressing, WS-ReliableMessaging
 REST services
 JUnit integration
 Maven integration

 Disadvantages:
 limited WS-* support

Dr. Balázs Simon, BME, IIT 55

Browser plugins

 For manual (not automated) testing

 Wizdler (Chrome plugin)
 for SOAP web services
 WSDL tree
 generating sample SOAP messages
 simple but may be useful

 Advanced REST client (Chrome plugin)
 very popular
 convenient REST requests:

 verbs
 HTTP headers
 HTTP body

 XML, JSON viewer

 Chrome can also debug WebSocket connections

Dr. Balázs Simon, BME, IIT 56

