Enterprise Service Bus (ESB),
Message Queuing (MQ)

Szolgaltatasorientalt rendszerintegracio
Service-Oriented System Integration

Dr. Balazs Simon
BME, IIT

Outline

" Integration requirements
= Enterprise Service Bus
" Message Queuing

Dr. Baldzs Simon, BME, IIT

Integration requirements

Dr. Baldzs Simon, BME, IIT

3>

System integration: within an enterprise

e-mail

Oracle
DB

Dr. Baldzs Simon, BME, IIT

{ad

System integration challenges

= Different levels:
= database, business, web, ...

= Different vendors:
= Microsoft, IBM, Oracle, SAP, ...

= Different technologies:
= NET, Java, C++, SAP, legacy systems, ...

= Different protocols
= SOAP, HTTP, FTP, SMTP, ...

= Different reliability and availability

Dr. Baldzs Simon, BME, IIT

Enterprise Application Integration

= EAl: Enterprise Application Integration

= Data integration:
= consistent information across multiple systems

= Business process integration:
" reusing and automating business processes

= Vendor independence:
= replaceable components to prevent vendor lock-in

= Common facade:

= provide a single consistent access interface shielding the users
from the internal details

Dr. Baldzs Simon, BME, IIT 6

EAI patterns

= Mediation (intra-communication)
= integration within the enterprise
= broker between different internal systems

= Federation (inter-communication)
= integration with the outside world
= shield internal systems from external details
= expose only relevant information to the world

Integration tasks

= Protocol conversion

= Data format conversion

= Messaging middleware

* Message routing and transformation

= Middleware and other quality of service (QoS)
" Business processes

= Human tasks

= Complex event processing

= Administration and management

Enterprise Service Bus
(ESB)

Dr. Baldzs Simon, BME, IIT

9>

Enterprise Service Bus (ESB)

= Realization of the enterprise integration tasks
" Implements the SOA

" [t is not a standard, it is a product!
= every vendor has it’s own
= danger of vendor lock-in

= Standardization initiatives:
= Java Business Integration (JBI): it is dying

= Service Component Architecture (SCA):
= jtis winning, but it does not cover a full ESB
= |language independent, but it is only adopted in the Java world

= There is no widely adopted vendor independent standard

Dr. Balazs Simon, BME, IIT 10

Properties of an ESB

= Bus topology

= Hides differences among underlying platforms, software
architectures, and network protocols

" Provides adapters between different protocols and data
formats

= Message-oriented middleware, message transformation
and routing

= Quality of Service (Qo0S): security, reliability, ...
= Service orchestration and service composition
= Incremental implementation and deployment

= Central monitoring and management

11

ESB

messaging

routing

transformation

Dr. Baldzs Simon, BME, IIT

message-oriented
middleware

service
composition

event handling

monitoring and
management

{12>

Bus topology

= The ESB is a central entity

= Every participant is connected to the bus
= no direct connection between the participants

" The bus provides a common message format

* Number of conversions: O(n)
= with direct connections it would be: O(n?)

13

Hides differences

= Can handle different vendors, platforms and technologies
= NET, Java, C++, SAP, ...

= Can handle different protocols
= HTTP, SOAP, FTP, SMTP, ...

= Can handle different application levels
= databases, business, web, ...

Dr. Baldzs Simon, BME, IIT 14

Adapters

= Adapters for:
= communication protocols
= HTTP, SOAP, FTP, SMTP, ...

= data format conversions
= text, XML, JSON, relational DB, ...

= platforms and legacy systems
= NET, Java, COBOL, C++, ...

" message exchange patterns
" reguest-response, one-way, publish-subscribe, ...

" Transforming data and messages to internal normalized
messages

15

Message-oriented middleware (MOM)

" Provides a reliable connection between the participants
= Handles internal normalized messages

= Queues and holds messages

= Message routing and transformation

= Backed by a message queuing system
= guaranteed transactional message delivery
= point-to-point and publish-subscribe models

Dr. Baldzs Simon, BME, IIT

16

Quality of Service (QoS)

= Security
= authentication and authorization
= encryption and digital signature for external services and clients

= Reliability

= an ESB is backed by a reliable MOM
= Availability
= Performance

" Transactions

Dr. Balazs Simon, BME, IIT 17

Service orchestration

= Available services through the ESB:
= services within the enterprise
= external services
= |egacy systems, data sources, data protocols

= Services can be combined into more complex services
= orchestration
= migration
= regularly executed tasks
= business logic (see business processes later...)

Dr. Baldzs Simon, BME, IIT

18

Incremental migration
= Legacy systems, data sources, protocols can be
incrementally connected to the ESB

= Services and combined services can be incrementally
developed and installed

= Existing connections between legacy systems can be
incrementally migrated to the ESB

=" Hence, with the use of ESB, SOA can be incrementally
introduced within the enterprise

19

Monitoring and management

= Service repository

= Service versioning

= Central administration

= Central configuration

= Runtime monitoring

= User management and access control
= Complex event processing

Dr. Balazs Simon, BME, IIT 20

ESB pros and cons

= Advantages:
" increased flexibility

= enterprise-wide scalability
(bus topology instead of point-to-point services)

= configuration instead of coding
= [oosely coupled system
= easy plug-in

= Disadvantages:
= vendor lock-in
= complexity
" increased overhead

Dr. Baldzs Simon, BME, IIT

21

ESB products

= Microsoft:
= BizTalk + WCF

= |IBM:

= |[BM Integration Bus (successor of WebSphere Message Broker
and WebSphere ESB)

= Oracle:
= Oracle Service Bus

= JBoss:
= SwitchYard (based on Apache Camel) for WildFly

= Apache:

= Camel

Dr. Balazs Simon, BME, IIT 22

Message Queuing (MQ)

Dr. Baldzs Simon, BME, IIT

{23>

Message Queuing (MQ)

= Producers send messages to queues
= Consumers receive messages from queues

= Message broker:

" manages queues
= provides guaranteed message delivery
= transactional send and receive

= Asynchronous communication

" Producers and consumers don’t know each other, they
only know queues

Dr. Baldzs Simon, BME, IIT

24

Message queuing advantages

" Loose coupling:

= producers and consumers don’t know each other directly, they
only know queues

= Reliability:
" messages are stored before forwarded, they are guaranteed to
be delivered

= Scalability:
= producers and consumers scale independently
= they can produce and consume messages at any rate

= Availability:
= simultaneous availability is not required for producers and
consumers

Dr. Balazs Simon, BME, IIT 25

Messaging models

= Point-to-point:
= FIFO queue
= multiple producers
= usually one consumer
= each message is delivered once to one consumer

= Publish-subscribe:
= topic or channel
= multiple consumers (called subscribers)
= usually a single producer (called publisher)
= each message is delivered once to every available subscriber

Dr. Baldzs Simon, BME, IIT

26

Point-to-point

)

message message message

Dr. Baldzs Simon, BME, IIT

queue

27>

Publish-subscribe

| @

message message message tOpiC

NS
NN

Dr. Baldzs Simon, BME, IIT

{28>

Point-to-point vs. publish-subscribe

a message is received a message is received
by only one consumer by all consumers
single consumer broadcast

messages delivered when messages delivered only
the consumer is online for those consumers who

are online
simple complex
not so flexible flexible

Dr. Baldzs Simon, BME, IIT 29

Queue types

= Public queue: public access

= Private queue: requires authentication for accessing the
queue

= Temporary queue: created only for a short time period

= Journal queue: keeps a copy of every message placed
within it

= Connector/bridge queue: connects two message queuing
systems

= Dead-letter/dead-message queue: expired or
undeliverable messages are put here

30

Message-oriented middleware (MOM)

= Built on top of an MQ

= Provides message transformation
= transformation between different message formats
= enriching messages with additional information

= Provides message routing

= conditionally forwarding messages to different queues based on
the message content

Dr. Balazs Simon, BME, IIT 31

MQ products

= Microsoft:
* Microsoft Message Queuing (MSMQ)

= Java Message Service (JMS):
= [IBM WebSphere MQ
= Oracle Advanced Queuing (AQ)
= JBoss HornetQ
= Apache ActiveMQ

Dr. Baldzs Simon, BME, IIT

32

Java Message Service
(JMS)

Dr. Baldzs Simon, BME, IIT

{33>

Java Message Service (JMS)

= Message queuing APl in Java
= Only an API, implementation is vendor-specific

= Messaging models:
= point-to-point: Queue
= publish-subscribe: Topic

= JNDI: queues, topics and connection factories
= usually registered in server configuration

= JMS 2.0: introduced in JavaEE 7

Dr. Baldzs Simon, BME, IIT

34

JMS 1.1 programing model

creates

creates

creates

IsE|E EEEEEERN

(@]

registers

creates _
receives from

sends to (synchronous)

4

receives from
(asynchronous)

llllllllllllllllllllllll>

Dr. Baldzs Simon, BME, IIT (35)

JMS 1.1 send example

public class JImsSender {
@Resource(lookup = "jms/ConnectionFactory")

private static ConnectionFactory connectionFactory;

@Resource(lookup = "jms/HelloQueue")
private static Queue queue;

public void sendHello() {
try {

Connection connection = connectionFactory.createConnection();

try {

Session session = connection.createSession(false,

Session.AUTO ACKNOWLEDGE) ;

MessageProducer producer = session.createProducer(queue);
TextMessage message = session.createTextMessage();

message.setText("hello");
producer.send(message);
} finally { connection.close(); }
} catch (Exception e) { e.printStackTrace();}

}
}

Dr. Balazs Simon, BME, IIT

36

JMS 1.1 receive example

public class JImsReceiver {
@Resource(lookup = "jms/ConnectionFactory")

private static ConnectionFactory connectionFactory;

@Resource(lookup = "jms/HelloQueue")
private static Queue queue;
public void receiveHello() {

try {

Connection connection = connectionFactory.createConnection();

try {

Session session = connection.createSession(false,

Session.AUTO ACKNOWLEDGE) ;

MessageConsumer consumer = session.createConsumer(queue);

connection.start();

Message message = consumer.receive();

if (message instanceof TextMessage) {
TextMessage text = (TextMessage)message;
System.out.println(text.getText());

}

} finally { connection.close(); }
} catch (Exception e) { e.printStackTrace(); }

D}Ba%zs Simon, BME, IIT

37

JMS 1.1 MessageListener example

public class JImsListener implements MessagelListener {
public void register() {
try {
InitialContext ic = new InitialContext();
ConnectionFactory connectionFactory =

(ConnectionFactory)ic.lookup("jms/ConnectionFactory");
Queue queue = (Queue)ic.lookup("jms/HelloQueue");

Connection connection = connectionFactory.createConnection();

try {

Session session = connection.createSession(false,

Session.AUTO ACKNOWLEDGE) ;

MessageConsumer consumer = session.createConsumer(queue);

consumer.setMessagelistener(this);
connection.start();
// : wait until messages are processed...
} finally { connection.close(); }
} catch (Exception e) { e.printStackTrace(); }
}

@Override

public void onMessage(Message message) {
/] ...

Dr. Balazs Simon, BME, IIT

38

JMS 1.1 Message-driven bean example

@MessageDriven(mappedName="jms/HelloQueue", activationConfig = {
@ActivationConfigProperty(propertyName = "acknowledgeMode",

propertyValue = "Auto-acknowledge"),
@ActivationConfigProperty(propertyName = "destinationType",

propertyValue = "javax.jms.Queue")
})
public class JImsListenerBean implements MessagelListener {
@Resource

private MessageDrivenContext mdc;

@Override
public void onMessage(Message message) {
TextMessage text = null;
try {
if (message instanceof TextMessage) {
text = (TextMessage) message;
System.out.println(text.getText());
}
} catch (Exception e) { e.printStackTrace(); }
}

Dr.%alézs Simon, BME, IIT 39

JMS 2.0 programing model

registers

+_ receives from
L 4
OLs’ynchronous)

‘A

sends to

)

receives from
(asynchronous)

Dr. Balézs Simon, BME, IIT (40)

JMS 2.0 send example

public class JImsSender2 {
@Resource(lookup = "jms/ConnectionFactory")
private static ConnectionFactory connectionFactory;
@Resource(lookup = "jms/HelloQueue")
private static Queue queue;

public void sendHello() {
try (JIMSContext context = connectionFactory.createContext()) {
JMSProducer producer = context.createProducer();
producer.send(qgueue, "hello");
} catch (Exception ex) {
System.out.println(ex);

}
}
}

Dr. Balazs Simon, BME, IIT 41

JMS 2.0 receive example

public class JImsReceiver2 {
@Inject
@IMSConnectionFactory("jms/ConnectionFactory")
private JMSContext context;
@Resource(mappedName = "jms/HelloQueue™)
private Queue queue;

public void receiveHello() {
try {
JMSConsumer consumer = context.createConsumer(queue);
String text = consumer.receiveBody(String.class);
System.out.println(text);
} catch (Exception ex) {
System.out.println(ex);

}
}
}

Dr. Balazs Simon, BME, IIT

42

JMS 2.0 MessagelListener example

public class JImsListener2 implements MessagelListener {
public void register() {

try {
InitialContext ic = new InitialContext();

ConnectionFactory connectionFactory =
(ConnectionFactory)ic.lookup("jms/ConnectionFactory");

Queue queue = (Queue)ic.lookup("jms/HelloQueue");
try (IMSContext context = connectionFactory.createContext()) {

JMSConsumer consumer = context.createConsumer(queue);

consumer.setMessagelListener(this);
// : wait until messages are processed...

}
} catch (Exception e) { e.printStackTrace(); }

}

@Override
public void onMessage(Message message) {

/] ...

43

Dr. Balazs Simon, BME, IIT

Microsoft Message
Queuing (MSMQ)

Dr. Baldzs Simon, BME, IIT

{a4)

Microsoft Message Queuing (MSMQ)

= Message queuing in Windows
= MSMQ service has to be installed in the Control Panel

= NET library: System.Messaging.dll

= Messaging models:
= only point-to-point: MessageQueue
= no publish-subscribe

Dr. Baldzs Simon, BME, IIT

45

MSMQ gueue naming

Queue type Syntax

Public queue MachineName\QueueName

Private queue MachineName\PrivateS\QueueName
Journal queue MachineName\QueueName\Journal$
Machine journal queue MachineName\JournalS

Machine dead-letter queue MachineName\DeadletterS

Machine transactional dead-letter queue MachineName\XactDeadletterS

Dr. Balazs Simon, BME, IIT 46

MSMQ programing model

- e -

sends receives

v v

Dr. Baldzs Simon, BME, IIT

{a7>

MSMQ gqueue management

// Creating a new queue:
MessageQueue.Create(@".\HelloQueue");

// Checking if queue exists:
if (MessageQueue.Exists(@".\HelloQueue"))

1
¥

/] ...

// Deleting a queue:
MessageQueue.Delete(@".\HelloQueue");

Dr. Baldzs Simon, BME, IIT

{48)

MSMQ send example

// Create a queue representation:
MessageQueue queue =
new MessageQueue(@".\HelloQueue");

// Send message:
queue.Send("hello");

// Or a Message object:

Message message = new Message("hello");
queue.Send(message);

Dr. Baldzs Simon, BME, IIT

MSMQ receive example

// Create a queue representation:
MessageQueue queue =
new MessageQueue(@".\HelloQueue");

// Recelve message:

Message message = queue.Receive();
string text = (string)message.Body;

Dr. Baldzs Simon, BME, IIT 50

WCF with MSMQ

= WCF also supports MSMQ

= SOAP over MSMQ:
" binding: netMsmqBinding
= URL scheme: net.msmq://
= Native MSMQ messages:
" binding: msmaqlntegrationBinding

= endpoint address:
msmg.formatname:DIRECT=0S:queuename

= operation parameter: MsmgMessage<...>

Dr. Baldzs Simon, BME, IIT

51

