
OSGi
Szolgáltatásorientált rendszerintegráció

Service-Oriented System Integration

Dr. Balázs Simon

BME, IIT



Outline

 Problems with Java modularization

 OSGi overview

 OSGi bundles

 OSGi implementations

 OSGi alternatives

Dr. Balázs Simon, BME, IIT 2



Problems with Java 
modularization

Dr. Balázs Simon, BME, IIT 3



Java class loading

 Class loaders are descendants of java.lang.ClassLoader

 Default behavior when a class has to be loaded:
 The class loader asks its parent class loader, whether the class is 

already loaded

 If yes: the class is not loaded again

 If no: the parent class loader asks its own parent, etc.

 If none of the ancestor class loaders knows about the class, only 
then will the class be loaded by the original class loader

 We can write custom class loaders

 Unique identifier of a class: its name + its class loader
 If two different class loaders load the same class, they are 

different classes! (ClassCastException, LinkageError)

Dr. Balázs Simon, BME, IIT 4



...

...

Standard Java class loading

Dr. Balázs Simon, BME, IIT 5

java -cp log4j.jar;. sample.Hello

ext.jar

rt.jar
Bootstrap 

ClassLoader

Extension 
ClassLoader

Application 
ClassLoader

log4j.jar

load

delegate

delegate

load

load



Application server class loading

Dr. Balázs Simon, BME, IIT 6

Bootstrap 
ClassLoader

Extension 
ClassLoader

Application 
ClassLoader

EAR ClassLoader

EJB ClassLoader WAR ClassLoader

EAR ClassLoader

EJB ClassLoader WAR ClassLoader



Modularity

 Modularity:
 encapsulation and information hiding

 Modularity in Java:
 visibility only for classes an methods

 no higher level (package, jar) modularity

 Problems with jar files:
 only meaningful at build-time and deploy-time

 no standard metadata for dependencies

 no standard metadata for versioning

 no mechanism for information hiding

Dr. Balázs Simon, BME, IIT 7



Conflicting classes

 Since otherlib.jar is the first in the 
classpath: always this Hello class will 
be loaded

 The Hello class in mylib.jar is never 
used

 Any change in our class is ineffective

Dr. Balázs Simon, BME, IIT 8

otherlib.jar

sample.Hello

mylib.jar

sample.Hello

java -cp otherlib.jar;mylib.jar;. sample.Hello



Conflicting classes

 Since otherlib.jar is the first in the 
classpath: always this Util class will 
be loaded

 The Util class in mylib.jar is never 
used

 Even though it is in our own jar!

 Possible solution: always use unique 
hierarchical package names!

 But: what if we have different 
versions of the same library?

Dr. Balázs Simon, BME, IIT 9

otherlib.jar

sample.Util

mylib.jar

sample.Hello

java -cp otherlib.jar;mylib.jar;. sample.Hello

sample.Util



Lack of explicit dependencies

 Some jars are standalone
 they do not depend on other libraries

 But most jar files use other libraries
 How do we know which libraries are required?

 Familiar exception at runtime: ClassNotFoundException

 Class-Path entry in the manifest:
 only adds other jars to the classpath

 if the jar is not found: ClassNotFoundException

 How to collect all the required jars?
 Maven can solve this

 But Maven can only load a single version of a dependency!

Dr. Balázs Simon, BME, IIT 10



Lack of version information

 Problem:
 xlib is only compatible with 1.x versions

 ylib is only compatible with 2.x versions

 Which commonlib version to load?

 We cannot load both:
 The first one in the classpath will hide the classes of the other version!

 This is a very common problem in Java
 especially in application servers

Dr. Balázs Simon, BME, IIT 11

commonlib-1.3.jar

myapp.jar

commonlib-2.1.jarylib.jar

xlib.jar



Application server class loading

Dr. Balázs Simon, BME, IIT 12

Bootstrap 
ClassLoader

Extension 
ClassLoader

Application 
ClassLoader

EAR ClassLoader

EJB ClassLoader WAR ClassLoader

EAR ClassLoader

EJB ClassLoader WAR ClassLoader



EAR silos

 In order to avoid version conflicts:
 the required libraries must be included in the EAR/WAR lib 

folder

 these EAR/WAR files become very heavyweight

 loading these EARs/WARs is slow and memory consuming

 If a library can be used by all applications:
 it should be pushed up in the class loader hierarchy tree

 but if it is loaded by the server at startup, it cannot be unloaded 
at will, as libraries in EAR/WAR files

 and these classes always take precedence over libraries included 
in the EAR/WAR files

Dr. Balázs Simon, BME, IIT 13



Lack of information hiding

 Java member visibilities:
 public: visible to everybody
 protected: visible to subclasses and other classes in the same 

package
 private: visible only within the class
 no visibility (default): visible within the same package

 Class visibilities: only public and default

 Problem:
 visibilities are defined for packages
 but deployment units are jar files, not packages
 classes are made public so that other packages within the same 

jar can see them, but this way other jars will be able to see 
them, too

 packages can be split between jars

Dr. Balázs Simon, BME, IIT 14



OSGi

Dr. Balázs Simon, BME, IIT 15



OSGi

 Originally: Open Service Gateway initiative
 now much more than just a gateway specification

 General purpose framework

 Dynamic module system for Java

 Bundle (a module):
 a simple jar file with some additional properties in the 

MANIFEST.MF file

 semantic version number

 exports packages

 imports packages

 Bundles can be loaded and unloaded dynamically

Dr. Balázs Simon, BME, IIT 16



OSGi layers

Dr. Balázs Simon, BME, IIT 17

Operating system

Execution environment

Module

Life cycle

Service

Se
cu

ri
ty

Bundles



OSGi layers

 Service layer
 communication model for bundles

 decouples service implementation from its interface

 it is a kind of dependency injection

 Life cycle layer
 provides an API to manage bundles

 installing, updating and uninstalling bundles

 starting and stopping bundles

Dr. Balázs Simon, BME, IIT 18



OSGi layers

 Module layer
 strict rules for sharing Java packages between bundles

 hiding packages from other bundles

 Security layer
 based on Java 2 security

 defines a secure packaging format

 runtime interaction with the Java 2 security layer

Dr. Balázs Simon, BME, IIT 19



OSGi bundle

 Unit of modularity

 Has a life cycle

 Has a strong semantic version number

 Provides services

 Uses other services

 OSGi is like a SOA inside a JVM
 dynamically loading and unloading bundles

 service registry for publishing and finding services

Dr. Balázs Simon, BME, IIT 20



Advantages of OSGi

 Enforced modularity
 application structure is clearer

 Declarative dependencies
 simplified building and administration

 Semantic version information
 libraries can be shared without risk

 libraries can be updated with reduced risk

 Per-module hot updates
 parts of an application can be replaced without any downtime

Dr. Balázs Simon, BME, IIT 21



OSGi bundles

Dr. Balázs Simon, BME, IIT 22



OSGi bundle

 A simple jar file
 packages, classes and other resources

 With additional entries in the
META-INF/MANIFEST.MF
 symbolic name

 semantic version number

 exported packages (with version number)

 imported packages (with version number)

 and other entries…

Dr. Balázs Simon, BME, IIT 23



Understanding OSGi bundles

 Java (the JVM) does not understand OSGi entries in the 
manifest file

 Only the OSGi framework can load and understand bundle 
manifests
 the OSGi framework is the system bundle which loads other 

bundles

 OSGi is like a container in which the bundles can run (analogy: 
EJB container)

 OSGi does not work out of the box in any environment:
 the application server itself has to run in an OSGi environment: 

the jars of the server have to be OSGi bundles, too

 or somehow the application must deploy an OSGi container with 
itself

Dr. Balázs Simon, BME, IIT 24



Bundle manifest example

Dr. Balázs Simon, BME, IIT 25

Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Bundle-SymbolicName: org.apache.cxf.cxf-api
Bundle-Version: 2.7.13
Bundle-Name: Apache CXF API
Bundle-Vendor: The Apache Software Foundation
Export-Package: org.apache.cxf;version="2.7.13",org.apache.cxf.annotat
ions;version="2.7.13"
Import-Package: org.slf4j;resolution:=optional;version="[1.5,2)",org.s
pringframework.beans;resolution:=optional;version="[2.5,4)",javax.xml
.bind;version="[0.0,3)"

Java manifest version

OSGi manifest version

Bundle unique identity

Imported packages with version numbers

Exported packages with version numbers



OSGi version numbers

 For publishing the bundle or package version

 Semantic version number:
 major, minor, micro: integers

 qualifier: numbers and letters

 examples: 1.0.0, 2.1.7, 1.3.4.build_20140420

 Change in the version number:
 major: breaking API change

 minor: compatible API change

 micro: no API change, only bugfixes

 qualifier: no semantics

Dr. Balázs Simon, BME, IIT 26

<major>.<minor>.<micro>.<qualifier>



OSGi version ranges

 For referencing a bundle or package version

 A version range:
 [1.0.0,2.0.0) means at least 1.0.0 and up to but not including 2.0.0
 square bracket: inclusive
 round bracket: exclusive

 A single version number:
 means that exact version or any above
 e.g. 2.1.3 means “2.1.3 or above”

 No version number:
 means 0.0.0 or above

 Import:
 if there are multiple matches, the highest version wins
 if there are still multiple matches: the framework chooses arbitrarily 

the bundle with the lowest ID

Dr. Balázs Simon, BME, IIT 27



OSGi runtime

 The OSGi framework is the system bundle

 There is usually an OSGi console, where the bundles can 
be managed
 the framework can install, uninstall, update, start and stop 

bundles
 each bundle is assigned an ID

 The bundles can also be assigned a start level (non-
negative integer)
 a bundle is started when the OSGi framework reaches its start 

level
 the framework makes sure that bundles with lower start level 

are already started
 the start level is only a runtime management concept, it cannot 

be configured in the manifest

Dr. Balázs Simon, BME, IIT 28



Bundle lifecycle

Dr. Balázs Simon, BME, IIT 29

Installed

Resolved

Uninstalled

Starting

Active

Stopping

install

resolve

uninstall

uninstall

refresh/
update

start

stop

refresh/
update

implicit/automatic transition

explicit transition



Bundle activator

 Activator class:
 called when the bundle is started or stopped

 receives a BundleContext object
 can be used to interact with the OSGi framework

 can register services

 can look up services

 Registering the activator in the manifest file:
 Bundle-Activator entry

Dr. Balázs Simon, BME, IIT 30



Bundle activator class

Dr. Balázs Simon, BME, IIT 31

package hello;
import org.osgi.framework.BundleActivator;
import org.osgi.framework.BundleContext;

public class Activator implements BundleActivator {
private static BundleContext context;

static BundleContext getContext() {
return context;

}

public void start(BundleContext bundleContext) throws Exception {
Activator.context = bundleContext;
System.out.println("Hello, World!") ;

}

public void stop(BundleContext bundleContext) throws Exception {
System.out.println("Goodbye, World!") ;
Activator.context = null;

}
}



Bundle manifest

Dr. Balázs Simon, BME, IIT 32

Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Bundle-Name: Hello
Bundle-SymbolicName: hello
Bundle-Version: 1.0.0.qualifier
Bundle-Activator: hello.Activator
Require-Bundle: org.eclipse.core.runtime
Bundle-RequiredExecutionEnvironment: JavaSE-1.7
Bundle-ActivationPolicy: lazy

Activator class



BundleContext

 Used for interaction with the OSGi framework:
 look up system-wide configuration properties

 find another installed bundle by its ID

 get a list of all installed bundles

 manipulate other bundles programmatically
 start, stop, update, uninstall, ...

 install new bundles programmatically

 register and unregister bundle listeners
 to be notified about bundle changes in the framework

 register and unregister service listeners
 to be notified about service changes in the framework

 register and unregister framework listeners
 to be notified about general events in the framework

Dr. Balázs Simon, BME, IIT 33



Bundle dependencies

Dr. Balázs Simon, BME, IIT 34

mylib-1.0.0.jar

sample.lib.*

sample.lib.impl.*

myapp-1.0.0.jar

sample.app.*
uses

Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Bundle-SymbolicName: mylib
Bundle-Version: 1.0.0.qualifier
Export-Package: sample.lib;vers
ion="1.0.0"

Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Bundle-SymbolicName: myapp
Bundle-Version: 1.0.0.qualifier
Import-Package: sample.lib;vers
ion="1.0.0"

uses

(There also exists a Require-Bundle entry, but its use is not recommended.)

If at least one of the imports cannot be resolved, the bundle 
cannot enter the resolved state and cannot be started!



Class loading in OSGi

 Every bundle has its own class 
loader

 The OSGi framework itself is the 
system bundle
 it loads other bundles
 exports JRE packages (e.g. java.*, 

javax.*)
 but forwards class loading to the 

bootstrap class loader
 this way the environment is 

transparent for other bundles
 the list can be extended for future 

Java versions

 In OSGi the class loaders build a 
graph, not a tree

Dr. Balázs Simon, BME, IIT 35

For non-JRE packages:

Is the package imported?
-> load by the imported bundle

Are there required bundles?
-> load by the required bundle

Is it on the current bundle’s
classpath (inside the bundle)?
-> load from the current bundle

Fragment import?

Dynamic import?

Fail



Services

 OSGi is like a SOA inside a JVM

 Services can be published
 a service has an interface

 a service can have properties

 Services can be looked up
 by its interface

 can be filtered by its properties

 kind of a dynamic dependency injection
 services can be unloaded and reloaded

Dr. Balázs Simon, BME, IIT 36



Service: simple Java

Dr. Balázs Simon, BME, IIT 37

public interface ICalculator {
double add(double left, double right);

}

public class Calculator implements ICalculator {
@Override
public double add(double left, double right) {

return left+right;
}

}



Registering a service

Dr. Balázs Simon, BME, IIT 38

package hello;

import org.osgi.framework.BundleActivator;
import org.osgi.framework.BundleContext;

public class Activator implements BundleActivator {
@Override
public void start(BundleContext context) throws Exception {
ICalculator calc = new Calculator();
context.registerService(ICalculator.class, calc, null);

}

@Override
public void stop(BundleContext context) throws Exception {
}

}

Interface Service object Properties

Unregistration is not required:
performed automatically when the bundle is stopped



Looking up a service

Dr. Balázs Simon, BME, IIT 39

public void calculate() {
ServiceReference<ICalculator> ref = 

context.getServiceReference(ICalculator.class);
if (ref != null) {

ICalculator calc = context.getService(ref);
if (calc != null) {
try {
double result = calc.add(3.4, 7.8);
System.out.println(result);

} finally {
context.ungetService(ref);

}
}

}
}

BundleContext

start using the service

stop using the service



Why two-stage service access?

 A ServiceReference object is a lightweight object
 it can be used to query the properties of the service

 When the service is started to be used, it requires 
additional administration by the OSGi framework

 There are other ways of obtaining services:
 ServiceTracker, ServiceListener

 Declarative Services: configuration files for dependency 
injection

Dr. Balázs Simon, BME, IIT 40



OSGi implementations

Dr. Balázs Simon, BME, IIT 41



Equinox

 Reference implementation of OSGi

 Eclipse is based on Equinox

 IBM WebSphere Application Server is also using Equinox

 Eclipse Public License (EPL)

Dr. Balázs Simon, BME, IIT 42



Apache Felix

 Community implementation from Apache

 Designed for compactness
 to be able to used in embedded environments

 Dependency injection: Apache Blueprint
 similar to Spring

 XML and annotation support

 Oracle WebLogic uses Apache Felix

 GlassFish also uses Apache Felix

 Apache License

Dr. Balázs Simon, BME, IIT 43



Knopflerfish

 Popular and mature implementation

 Developed and maintained by 
Makewave AB

 Has a commercially supported edition: Knopflerfish Pro

 BSD license

Dr. Balázs Simon, BME, IIT 44



OSGi alternatives

Dr. Balázs Simon, BME, IIT 45



Maven

 Jars are handled as modules
 versioning

 declarative dependency

 Maven automatically downloads and uses the appropriate 
version of all dependencies
 building Java applications is much easier than before Maven

 Maven is a build system, not a runtime
 it cannot solve the problems of the flat class path and using 

multiple versions of the same jar at runtime

 OSGi systems can be built by Maven
 Apache Felix Maven plugin: maven-bundle-plugin

 Bnd tool plugin: bnd-maven-plugin

Dr. Balázs Simon, BME, IIT 46



Project Jigsaw

 Java Platform Module System

 Planned for Java 9

 Goal: modularization of the JRE and JDK

 Declarative dependencies between modules

 Only exported packages will be visible

 Packages can be be split between modules

 Internal com.sun.* packages will be hidden

 No multiple versions of the same module at the same time
 this is bad: the jar-hell problem will be transformed to module-hell

 Jigsaw is not recommended for application development, it is 
rather for splitting the JRE and JDK into modules

Dr. Balázs Simon, BME, IIT 47


