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JSON
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JSON

 JavaScript Object Notation

 Lightweight data-interchange format

 Easy for humans to read and write

 Easy for machines to parse and generate

 More compact than XML
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JSON basic types

 Number: signed decimal
 no separate types for integers and floating point numbers

 String
 double quote quotation, backslash for escaping

 Boolean: true or false

 Array: 
 ordered list of zero or more values

 elements can be of any type

 Object: 
 unordered collection of name-value (key-value) pairs

 keys must be unique within an object

 null: means no value
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JSON example
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{
"firstName": "John",
"lastName": "Smith",
"age": 25,
"address":
{

"streetAddress": "21 2nd Street",
"city": "New York",
"state": "NY",
"postalCode": "10021"

},
"phoneNumber":
[

{
"type": "home",
"number": "212 555-1234"

},
{

"type": "fax",
"number": "646 555-4567"

}
]

}



HTTP
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HTTP GET
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GET /index.html
HTTP/1.1
Host: www.google.com
User-Agent: Mozilla/5.0 
Connection: keep-alive

HTTP/1.1 200 OK
Content-Type: text/html; charset=UTF-8
Content-Encoding: gzip
Server: gws
Content-Length: 10200

<!doctype html><html><head>…

Request: Response:
HTTP status code



HTTP GET: http://www.abc.com/login?user=xy&pass=123
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GET /login?user=xy&pass=123 HTTP/1.1

Host: www.abc.com

User-Agent: Mozilla/5.0 

Connection: keep-alive

HTTP Method Local URL Version

Host name Query paramsHeaders+
Empty line



HTTP POST: http://www.abc.com/login
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HTTP Method Local URL Version

Host name HTTP Body:
Post parameters

Headers+
Empty line

POST /login HTTP/1.1

Host: www.abc.com

User-Agent: Mozilla/5.0 

Content-Type: application/x-www-form-urlencoded

Content-Length: 16

user=xy&pass=123



REST
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REST

 REpresentational State Transfer

 RESTful HTTP

 HTTP protocol extension
 GET, POST, PUT, DELETE

 Input parameters:
 URL part

 URL query string

 POST parameter

 HTTP body

 Result:
 HTTP body

 Very simple: testable by browser
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GET examples

 GET /api/movies
 returns all movies

 GET /api/movies/12
 returns the movie with identifier 12

 GET /api/movies/12/actors
 returns the list of actors for the movie with identifier 12

 GET /api/movies?orderby=title
 returns all movies sorted by their titles
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GET

 GET is for reading, retrieving resources

 Must not modify any resources!
 HTTP specification for GET

 Input parameters:
 usually in the URL or in query parameter

 identifiers, paging, filtering and sorting criteria

 HTTP body is usually empty

 Output:
 in the HTTP body, usually XML or JSON

 success: 200 (OK)

 error: 404 (Not found) or 400 (Bad request)
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POST examples

 POST /api/movies
 creates a new movie

 the content of the movie is passed in the HTTP body:
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{
"title": "Batman Begins",
"year": 2005,
"director": "Cristopher Nolan"

}



POST

 POST is for creating new resources
 usually for creating a new item under an existing resource item

 Care must be taken when resending POST requests
 HTTP specification (e.g. credit card transaction)
 the server creates the resource whenever a POST request is made
 multiple identical POST requests may result in more than one 

resources with the same content

 Input:
 URL: location of the parent resource
 HTTP body: the content of the child resource to be created

 Output:
 usually the identifier or location (Location HTTP header) of the 

resource created
 success: 201 (Created)
 error: 404 (Not found) or 409 (Conflict)
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PUT examples

 PUT /api/movies/12
 updates the movie with identifier 12

 or creates a new movie if it does not exist

 the content of the movie is passed in the HTTP body:
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{
"title": "Batman Begins",
"year": 2005,
"director": "Cristopher Nolan"

}



PUT

 PUT is for updating a resource
 or creating a new one if it did not exist

 Input:
 URL of the resource to be updated

 the URL contains the identifier of the resource
 this will be the identifier on creation

 so no multiple resources are created when repeating the PUT operation

 HTTP body: the new content of the resource

 Output:
 HTTP body may be empty

 no identifier or location is necessary

 success: 204 (No content), 201 (Created), 200 (OK)

 error: 404 (Not found)
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DELETE examples

 DELETE /api/movies/12
 deletes the movie with identifier 12

 DELETE /api/movies/12/actors/65
 deletes the actor 65 from the movie 12
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DELETE

 DELETE is for deleting a resource

 Input:
 URL of the resource to be deleted

 the URL contains the identifier of the resource

 HTTP body is usually empty

 Output:
 either an empty HTTP body

 or the content of the deleted resource
 careful with this: it may be very large

 success: 204 (No content) or 200 (OK)

 error: 404 (Not found)
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REST parameter passing
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Input parameters

 Query parameter:
 http://…/calculator/add?left=3.0&right=5.0

 Path parameter:
 http://…/calculator/add/3.0/5.0

 Matrix parameter:
 http://…/calculator/add;left=3.0;right=5.0

 POST parameter:
 http://…/calculator/add
 like the query parameter but inside the HTTP body

 HTTP body:
 a serialized resource (e.g. in XML or JSON)

 Expected result data format: HTTP “Accept” header
 for XML: application/xml
 for JSON: application/json
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Output result

 In HTTP body

 Actual data format: HTTP “Content-Type” header
 or if the server could not support the requested data format: 

HTTP 406 (Not acceptable)

 Usual data formats:
 XML

 JSON
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XML result
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> GET /RestApp1/resources/person/getpb HTTP/1.1
> User-Agent: curl/7.20.1 (i686-pc-cygwin) …
> Host: localhost:8080
> Accept: application/xml
> 
< HTTP/1.1 200 OK
< X-Powered-By: Servlet/3.0
< Server: GlassFish Server Open Source Edition 3.0.1
< Content-Type: application/xml
< Content-Length: 227
< Date: Sun, 13 Mar 2011 12:21:17 GMT
<
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<person><name>Peter Bishop</name><age>27</age>
<friends><name>Olivia Dunham</name><age>26</age></friends>
<friends><name>Bolivia Dunham</name><age>26</age></friends>
</person>

curl -v -X GET -H"Accept: application/xml" 
http://localhost:8080/RestApp1/resources/person/getpb



XML result
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> GET /RestApp1/resources/person/getpb HTTP/1.1
> User-Agent: curl/7.20.1 (i686-pc-cygwin) …
> Host: localhost:8080
> Accept: application/json
> 
< HTTP/1.1 200 OK
< X-Powered-By: Servlet/3.0
< Server: GlassFish Server Open Source Edition 3.0.1
< Content-Type: application/json
< Transfer-Encoding: chunked
< Date: Sun, 13 Mar 2011 12:21:19 GMT
<
{"name":"Peter Bishop","age":"27",
"friends":[{"name":"Olivia Dunham","age":"26"},
{"name":"Bolivia Dunham","age":"26"}]}

curl -v -X GET -H"Accept: application/json" 
http://localhost:8080/RestApp1/resources/person/getpb



REST principles
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REST principles

 Identifying resources

 Linking things

 CRUD operations

 Multiple data representation

 Stateless communication
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Identifying resources

 URI: Universal Resource Identifier
 base of resource identification (URN, URL)

 URN: Universal Resource Name
 URI that does not contain location information
 e.g. urn:isbn:0307346617
 pro: valid forever
 con: contain no information on their resolution

 URL: Universal Resource Locator
 URI that contains location information
 con: may not be valid forever, especially if they contain 

technology-specific parts, e.g.
http://someserver.com/ActionServlet?blah=blah

 but they can be used correctly, e.g.
http://company1.com/customer/123456
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Identifying resources

 Use URLs!
 unique identifier for the resource

 easy to resolve due to the location information

 should be independent of the underlying technology

 Examples for resources:
 documents (blogs, news, etc.)

 data (calculation result, metadata, etc.)

 services (SOAP web service, REST, etc.)

 concepts (people, organizations, etc.)
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Linking things

 URLs must be chosen carefully

 Has a lot of advantages:
 easy to forward

 resource behind it can be accessed later

 analogy: C++ pointers

 more secure: easier to configure access rights to the resource
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Processing URLs

 URL seems hierarchic

 Client:
 should not process the contents of an URL

 should only use it as a reference

 like browsers

 the structure of the URL may change by time

 Hence, no need for interface description

 The four basic operations are enough for handling 
resources: GET, POST, PUT, DELETE
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Standard operations on resources

 CRUD: create, read, update, delete

 Properties (from the HTTP specification):
 safe: the client only retrieves data, it is not responsible for side 

effects

 idempotent: repeating the same operation results in the same 
state

 Repeating different idempotent operations may result in 
different results
 e.g. read-delete-read

 Repeating operations without side effects has the same 
results
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Standard operations

CRUD safe idempotent cacheable

GET read yes yes yes

POST create no no no

PUT
update/
create

no yes no

DELETE delete no yes no
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POST: the servers assigns the identifier
PUT: the client assigns the identifier



Multiple data representation

 HTML:
 only for humans
 structure may often change
 computers require more formal representation (e.g. XML, JSON)

 The client should be able to choose between the 
representations

 A possible but bad solution:
 http://company1.com/2009/report.html
 http://company1.com/2009/report.xml
 http://company1.com/2009/report.xls

 Correct solution: “Accept” HTTP header, e.g.
 GET /2009/report HTTP/1.1
Host: company1.com
Accept: application/xml

 If the server does not support it, it may send: HTTP 406 Error
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Stateless communication

 REST is stateless

 But the application may have a state:
 stored in a resource (not in memory)

 stored on the client side (always sent to the server)

 Advantage:
 scalability: no session required on the server side

 different server instances may serve the same client with serial 
requests

 server instances can be stopped and restarted
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Criticism of REST
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REST criticism

 Only usable for CRUD operations

 No interface description

 Reveals too many internal details

 Lack of design guidelines

 Lack of middleware functions

 No publish-subscribe and asynchronous communication
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Only usable for CRUD operations

 It can be used for other operations, e.g.:
 http://example.com/sum?a=2&b=3

 But this is cheating:
 the URI must uniquely identify the resource

 No cheating:
 the resource is the sum of two and three

 Question: which HTTP method to use?
 GET is sufficient: cacheable, no side effect, safe, idempotent

 But: usually we need side effects. Which HTTP method to 
use in this case?
 POST
 the server can respond with a URI pointing to the result
 the result can be retrieved by a redirect, it is reusable, cacheable
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No interface description

 Interface description:
 describes the operation and their parameters
 no semantics
 used for: generating client proxy and server skeleton

 REST:
 only 4 operations
 data: usually in XML (can be checked by XSD), or in JSON

 Recommended solution:
 textual description about the semantics of the operations
 e.g. description in HTML for a GET

 There are formal descriptors:
 WADL (Web Application Description Language), WSDL 2.0, Swagger, 

RAML, …
 but they are not widely supported (e.g. .NET does not support them)
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Reveals too many internal details

 Mapping a database to REST shows the database structure

 REST does not mean that the inner database 
representation must be published
 REST should have a protective logic before accessing the 

database

 REST is data centric instead of operation centric

 Rule: publish the resources through a URI
 they can be protected easier

 Other operations besides CRUD 
 these can be as complex as a SOAP or RPC call

 can execute business logic and protect the database
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Lack of design guidelines

 No official best-practices

 No standard solution for the usual tasks

 No recommendation for transforming existing services to 
REST

 No recommendation for the URI format

 These critics are not true anymore
 there are guidelines

 not standard, but quasi-standard
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Lack of middleware aspects

 No transactions:
 true

 No security:
 message-level security: true
 point-to-point security: there is HTTPS

 but: don’t pass parameters in the URL

 No reliable messaging
 we cannot be sure whether the operation succeeded
 if HTTP 200 OK: we know it’s a success
 if no answer: we can’t be sure
 but: idempotent operations (GET, PUT, DELETE) can be resent
 we have to be careful with POST

 These critics are true, but REST was never designed for these
 use SOAP and WS-* when these middleware aspects are required 
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No publish-subscribe and asynchronous communication

 REST: client-server model

 Publish-subscribe:
 RSS is a possible solution

 GET operation, can be cached

 but: the client is the initiator

 notification-by-polling

 Asynchrnonous operations:
 if the server has to perform a long task

 solution: reply with HTTP 202 Accepted

 responses:
 the server can return the URI of the result, the client can poll at this URI

 the client passes a URI to the server, the server can send the result here
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CRUD operations with 
REST
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CRUD operations

 POST: creating a new resource (create)

 GET: retrieving resources (read)

 PUT: updating a resource (update)
 PATCH: partially updating a resource

 but PATCH is not widely supported

 DELETE: deleting a resource (delete)
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Resource types

 Collection (~ database table)
 a collection of instances

 e.g. /api/movies, /api/movies/12/actors

 Instance (~ database record)
 a single entity with attributes and values

 selected from a collection by its identifier

 e.g. /api/movies/12, /api/movies/12/actors/53

 (Database is only an analogy! Do not publish a database 
directly through REST!)
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GET: read

 GET /api/movies
 returns all the movies

 GET /api/movies/12
 returns the movie with identifier 12
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DELETE: delete

 DELETE /api/movies/12
 deletes the movie with identifier 12

 DELETE /api/movies
 deletes all movies

 often not intended: do not use it!
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PUT: full update or create

 PUT /api/movies/12
 updates the movie with identifier 12

 full update: the resource will be completely replaced
 question: how to make partial updates?

 PATCH method? it is not widely supported...

 or creates a movie with identifier 12 if it does not exists
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POST: create or partial update

 POST /api/movies
 creates a new movie

 identifier is assigned by the server

 the identifier or the new resource should be returned

 POST /api/movies/12
 invalid for creation: the server should assign the identifier

 but it can be used for partial update: only the fields sent in the 
request will be updated
 the updated resource should be returned
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RPC operations with REST
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RPC with REST

 REST is not designed for RPC
 REST is for handling resources

 But: REST can be used for RPC
 Request:

 always POST
 other HTTP methods are not used

 wrapper message in the HTTP body for the operations of the service
 root name: the name of the operation
 children of the root: parameters of the operation

 other parameter passing methods are not used

 Response:
 wrapper message containing the single return result

 Like SOAP document/wrapped but without the SOAP envelope
 Interface description:

 interface must be documented
 provide XSD for the clients
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RPC service example
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struct Complex
{
double Re;
double Im;

}

interface Calculator
{
Complex Add(Complex left, Complex right);
Complex Subtract(Complex left, Complex right);
Complex Multiply(Complex left, Complex right);
Complex Divide(Complex left, Complex right);

}



REST request example

 Recommended:
 POST /api/calculator/Add

 POST /api/calculator/Subtract

 etc.

 HTTP body:
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<Add>
<left>
<Re>4.5</Re>
<Im>3.1</Im>

</left>
<right>
<Re>7.2</Re>
<Im>9.3</Im>

</right>
</Add>

{
"left": {
"Re": "4.5",
"Im": "3.1"

},
"right": {
"Re": "7.2",
"Im": "9.3"

}
}



REST response example

 HTTP body:
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<AddResponse>
<AddResult>
<Re>11.7</Re>
<Im>12.4</Im>

</AddResult>
</AddResponse>

{
"AddResult": {
"Re": "11.7",
"Im": "12.4"

}
}



REST interface 
descriptors
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REST interface descriptors

 No standard and widely supported interface descriptor, 
but there are a lot of initiatives

 WSDL 2.0, WADL
 neither is widely adopted
 mostly because of poor human readability

 OpenAPI (formerly Swagger)
 open-source, language agnostic, extensible into new technologies and protocols 

beyond HTTP
 code generators for many languages
 very popular
 no built-in support in WCF and JAX-RS

 RAML (RESTful API Modeling Language)
 general API description language
 more readable than Swagger
 good for designing an API from scratch

 Swagger is best suited to documenting existing API

 no built-in support in WCF and JAX-RS

 API Blueprint
 good for designing an API from scratch

 …
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Swagger example

Dr. Balázs Simon, BME, IIT 58

{

"swaggerVersion": "1.2",

"basePath": "http://localhost:8000/greetings",

"apis": [

{

"path": "/hello/{subject}",

"operations": [

{

"method": "GET",

"summary": "Greet our subject with hello!",

"type": "string",

"nickname": "helloSubject",

"parameters": [

{

"name": "subject",

"description": "The subject to be greeted.",

"required": true,

"type": "string",

"paramType": "path"

}

]

}

]

}

],

"models": {}

}



RAML example
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#%RAML 1.0
title: GitHub API
version: v3
baseUri: https://api.github.com
mediaType:  application/json
securitySchemes:
oauth_2_0: !include securitySchemes/oauth_2_0.raml

types:
Gist:  !include types/gist.raml
Gists: !include types/gists.raml

resourceTypes:
collection: !include types/collection.raml

traits:
securedBy: [ oauth_2_0 ]
/search:
/code:
type: collection
get:


