
Protocol Buffers, gRPC
Szolgáltatásorientált rendszerintegráció

Service-Oriented System Integration

Dr. Balázs Simon

BME, IIT

Outline

 Remote communication
 application level vs. transport level protocols

 binary vs. textual serialization

 Protocol Buffers

 HTTP/2

 gRPC

Dr. Balázs Simon, BME, IIT 2

Remote communication

Dr. Balázs Simon, BME, IIT 3

Remote communication

Dr. Balázs Simon, BME, IIT 4

Server memory spaceClient memory space

Client object

Server implementation

Server interface

Adapter

Proxy

Server interface

Network
Serialization/
Deserialization

Serialization/
Deserialization DB

XML/JSON/...

Remote communication protocol stacks

Dr. Balázs Simon, BME, IIT 5

IP

TCP

HTTP

SOAP

C#/Java/...

IP

TCP

HTTP

IP

TCP

HTTP

XML/JSON/...

C#/Java/...

SOAP web services REST web services WebSocket services

C#/Java/...

Message serialization

 1. Binary serialization
 fast and efficient

 uses less memory

 requires binary compatibility between the client and the server

 usually when the client and the server are from the same
language

 2. Text serialization (XML, JSON, ...)
 slow and not so efficient

 may need a lot of memory

 has much better compatibility than binary serialization

 even between different languages

Dr. Balázs Simon, BME, IIT 6

Merging the advantages

 We need a protocol that:
 is fast and efficient

 has a small memory footprint

 provides backwards (and possibly forwards) compatibility
between different versions of the application

 provides compatibility between different programming
languages

Dr. Balázs Simon, BME, IIT 7

CORBA

 Common Object Request Broker Architecture
 Object Management Group standard

 first version was released in 1991

 Binary protocol: Internet Inter-ORB Protocol (IIOP)
 fast and efficient

 Interface descriptor: Interface Definition Language (IDL)
 looks like C++, but it is language independent

 it is mapped to specific languages by the IDL compiler:
it generates a lot of files

 standard language mappings:
C, C++, C++11, Java, Python, ...

 non-standard language mappings:
C#, Erlang, Perl, Visual Basic, ...

Dr. Balázs Simon, BME, IIT 8

IP

TCP

IIOP

GIOP

C++/Java/...

Problems with CORBA

 A lot of complexity and bloat in the specifications and
implementations

 Steep learning curve
 the specification is about 1000 pages long, and only 5% of that is

relevant to our needs

 Some of the language mappings seem unnatural
 CORBA-specific code does not interface easily with standard libraries

or third-party components

 Versioning and compatibility issues of interfaces between
versions
 Mismatches cause memory corruption and/or crashing

 CORBA does real OO in a distributed environment
 e.g. inheritance, sending objects through the wire, etc.
 CORBA became too complex
 services have proved to be enough, we don’t need the complexity of

distributed OO
Dr. Balázs Simon, BME, IIT 9

Protocol Buffers

Dr. Balázs Simon, BME, IIT 10

Protocol Buffers (proto)

 Developed by Google
 first version in 2001, published to the outside world in 2008

 It is a method for serializing structured data

 Useful in developing programs to communicate with each
other over a wire or for storing data
 the serialized data can be transferred through any network

protocol (e.g. TCP, HTTP, ...)

 Interface description language: proto
 describes the structure of the data

 compiled by a code generator to specific languages: C++, Java,
Python, Objective-C, C#, JavaNano, JavaScript, Ruby, Python, Go,
PHP

Dr. Balázs Simon, BME, IIT 11

Advantages of Protocol Buffers

 Simple

 Fast and efficient

 Small memory footprint

 Provides backwards and forwards compatibility between
different versions of the application

 Provides compatibility between different programming
languages

Dr. Balázs Simon, BME, IIT 12

Using Protocol Buffers

 Steps:
 1. define message formats in a .proto file

 2. use the protocol buffer compiler to generate code for the
language specific protocol buffer API

 3. use the language specific protocol buffer API to write and
read messages

Dr. Balázs Simon, BME, IIT 13

.proto
Protocol
Buffers

compiler

C++

Java

C#

...

Example: address book

 Each person in the address book has a name, an ID, an email address, and
a contact phone number

Dr. Balázs Simon, BME, IIT 14

syntax = "proto3";

message Person {
string name = 1;
int32 id = 2;
string email = 3;

enum PhoneType {
MOBILE = 0;
HOME = 1;
WORK = 2;

}
message PhoneNumber {
string number = 1;
PhoneType type = 2;

}

repeated PhoneNumber phones = 4;
}
message AddressBook {
repeated Person people = 1;

}

addressbook.proto

Example: address book

Dr. Balázs Simon, BME, IIT 15

syntax = "proto3";

message Person {
string name = 1;
int32 id = 2;
string email = 3;

enum PhoneType {
MOBILE = 0;
HOME = 1;
WORK = 2;

}

message PhoneNumber {
string number = 1;
PhoneType type = 2;

}

repeated PhoneNumber phones = 4;
}

message AddressBook {
repeated Person people = 1;

}

Message
(structured data)

Nested type

Enum type

Array

Field identifier (tag):
* required for backwards and forwards
compatibility
* serves the same role as a tag in XML

Enum literal

Fields

 Multiplicity:
 singular: zero or one occurrence (optional)

 when omitted: it has a default value

 repeated: zero or more occurrence (array)
 the order is preserved

 Every field is optional in proto3
 (proto2 had required and optional fields, but required fields

cause a lot of backwards and forwards compatibility issues)

 Type:
 scalar value type (numeric, bool, string, bytes)

 default value: zero, false, empty string, empty bytes

 Message type
 default value: language dependent

 Enum type
 default value: 0 (the first defined enum literal must be 0)

Dr. Balázs Simon, BME, IIT 16

Beginning of a proto file

Dr. Balázs Simon, BME, IIT 17

syntax = "proto3";

package tutorial;

import "myproject/other_protos.proto";

option java_package = "google.protobuf.examples.address_book";
option java_outer_classname = "AddressBookProtos";

option csharp_namespace = "Google.Protobuf.Examples.AddressBook";

message Person {
// ...

}

message AddressBook {
// ...

}

Customizing Java mapping (optional)

Customizing C# mapping (optional)

Package/namespace if it is not customized (optional)

Importing other proto files (optional)

proto version 3

Language mapping

 For C++, the compiler generates a .h and .cc file from each .proto, with a
class for each message type described in your file.

 For Java, the compiler generates a .java file with a class for each message
type, as well as a special Builder classes for creating message class
instances.

 Python is a little different – the Python compiler generates a module with
a static descriptor of each message type in your .proto, which is then used
with a metaclass to create the necessary Python data access class at
runtime.

 For Go, the compiler generates a .pb.go file with a type for each message
type in your file.

 For Ruby, the compiler generates a .rb file with a Ruby module containing
your message types.

 For JavaNano, the compiler output is similar to Java but there are no
Builder classes.

 For Objective-C, the compiler generates a pbobjc.h and pbobjc.m file from
each .proto, with a class for each message type described in your file.

 For C#, the compiler generates a .cs file from each .proto, with a class for
each message type described in your file.

Dr. Balázs Simon, BME, IIT 18

Scalar value types

Dr. Balázs Simon, BME, IIT 19

.proto type C++ type Java type C# type

double double double double

float float float float

int32 int32 int int

int64 int64 long long

uint32 uint32 int uint

uint64 uint64 long ulong

sint32 int32 int int

sint64 int64 long long

fixed32 uint32 int uint

fixed64 uint64 long ulong

sfixed32 int32 int int

sfixed64 int64 long long

bool bool boolean bool

string string String string

bytes string ByteString ByteString

inefficient for
negative values

encoded as variable
length values

encoded as fixed
length values

encoded as UTF-8

Maintaining compatibility when changing message types

 Don't change the numeric tags for any existing fields

 Adding new fields:
 messages of the old format can still be parsed, missing fields will

have default values

 old applications can still parse new messages, but they will
ignore the new fields

 Fields can be removed, as long as the tag number is not
used again in a later defined message type
 field names and tag values can be marked as reserved to

prevent accidental future reuse

 Some data types are compatible with each other and can
be interchanged
 (see documentation)

Dr. Balázs Simon, BME, IIT 20

Mapping to XML and JSON

 Protocol Buffer messages can be mapped to XML and
JSON, making it easier to share data between systems

 See: protostuff library

Dr. Balázs Simon, BME, IIT 21

ProtoBuf

Using Protocol Buffers in protocol stacks

Dr. Balázs Simon, BME, IIT 22

IP

TCP

HTTP

IP

TCP

HTTP

ProtoBuf

C#/Java/...

REST web services WebSocket services

C#/Java/...

HTTP/2

Dr. Balázs Simon, BME, IIT 23

Problems of HTTP 1.1

 Originally HTTP was small and simple, but it grew over time with
extensions, and now it has a lot of headers
 it is hard to support all of them
 most of them are not used anyway
 they can become a large overhead, especially with cookies

 Growing page size and object count
 average web page size increased to 2 MB
 average number of objects to download for a web page is 100
 therefore the transfer size and number of requests is growing

 HTTP is very sensitive to latency because of the large number of
requests
 although the bandwidth has increased in recent years,

latency hasn’t decreased

 Head of line blocking
 HTTP pipelining is a way to send multiple requests through the same

connection to prevent opening new connections
 but a slow request (e.g. downloading a large JavaScript file) can hold up other

requests in the pipeline (e.g. downloading the HTML page)

Dr. Balázs Simon, BME, IIT 24

HTTP/2

 Published in 2015

 Binary protocol
 stricter than text, easier and faster to parse

 easier to define frames and their boundaries

 often compressed and encrypted

 cannot be handcrafted by humans (e.g. through telnet)

 we need a transformation to human readable form for
debugging (e.g. wireshark)

 Each message is a frame
 there are 10 frame types

 each frame has the following structure:

Dr. Balázs Simon, BME, IIT 25

length type flags stream ID payload

Streams

 A single HTTP2 connection can contain multiple
concurrently-open streams

 A stream is practically a virtual connection
 has a stream identifier (integer)

 frames having the same stream identifier belong to the same
virtual connection

 the order of frames within a stream is preserved

 each stream can be opened and closed independently by either
the client or the server

 Frames of different streams are multiplexed through a
single HTTP2 connection:

Dr. Balázs Simon, BME, IIT 26

client server

streams streams
single HTTP2 connection

Priorities and dependencies

 Streams can have priorities

 Frames of higher priority streams are sent before frames
of lower priority streams

 Using priority frames the client can build a dependency
graph (tree) of streams, where child streams depend on
the completion of parent streams

 Priority weights and dependencies can be changed
dynamically at run-time

 Important for browsers:
 when a user scrolls the page and it has to download images

 when the user changes tabs

Dr. Balázs Simon, BME, IIT 27

Header compression

 HTTP 1.1 is stateless, so is HTTP2

 The client needs to send state information in every
request

 This is a large overhead (500-800 bytes + cookies) for each
request

 In HTTP2 headers are compressed

 In HTTP2 only the headers which are changed are sent,
previous headers are stored in an index table on both
sides

Dr. Balázs Simon, BME, IIT 28

Reset

 If some data becomes irrelevant, the stream has to be
stopped (e.g. browser tab is closed)

 This can be done with the special reset frame
 the HTTP2 connection remains open

 only the stream is reset

 This saves a lot of bandwidth

 (With HTTP 1.1 the TCP connection would have to be
closed and reopened)

Dr. Balázs Simon, BME, IIT 29

Server push

 If the client asks for a resource, the server may know that
the client will probably need other resources
 e.g. when downloading a web page + JavaScript files

 Then the server can send additional resources to the
client without being asked

 The client must explicitly allow the server to do so

 The client can terminate server push by resetting the
stream

Dr. Balázs Simon, BME, IIT 30

Flow control

 Each stream has its own flow window (buffer)

 Both the client and the server have to tell the other the
size of this window

 The other end is only allowed to send that much data until
the window is extended

 (Similar to TCP flow control, but for individual streams)

Dr. Balázs Simon, BME, IIT 31

Transport Level Security (TLS)

 HTTP2 connections can be secured (https://)

 The standard allows non-secured connections (http://)

 But the popular browsers decided to only implement
secure connections

 Security has not much overhead, but has a lot of
advantages

Dr. Balázs Simon, BME, IIT 32

Compatibility with HTTP 1.1

 It is possible to proxy traffic between HTTP2 and HTTP 1.1

 Mapping of frame types:
 DATA

 HEADERS

Dr. Balázs Simon, BME, IIT 33

gRPC

Dr. Balázs Simon, BME, IIT 34

gRPC

 Efficient RPC based on HTTP/2 and Protocol Buffers
 developed by Google, released in 2015 to the public

 Interface description: proto

 Provides simple RPC and streamed RPC
 simple RPC: single input/output message
 streamed RPC: sequence of input/output messages
 can be combined: simple/streamed input/output

 Bi-directional streaming and integrated authentication
using HTTP/2

 Supports many programming languages
 C++, Java, Python, Go, Ruby, C#, JavaScript, Objective-C, PHP,

Android
 the client and the server can be in any of these languages

Dr. Balázs Simon, BME, IIT 35

Using gRPC

 Steps:
 1. define the service and its messages in a .proto file
 2. use the protocol buffer compiler to generate code for the language

specific protocol buffer API
 3. use the language specific protocol buffer API to implement the

server
 4. use the language specific protocol buffer API to implement the client

Dr. Balázs Simon, BME, IIT 36

.proto
Protocol Buffers
compiler with
gRPC plugin

C++

Java

C#

...

Calculator example

Dr. Balázs Simon, BME, IIT 37

syntax = "proto3";

package calc;

service Calculator {
rpc Add (stream AddRequest) returns (AddReply) {}
rpc Divide (DivideRequest) returns (DivideReply) {}

}
message AddRequest {

int32 number = 1;
}
message AddReply {

int32 result = 1;
}
message DivideRequest {

int32 left = 1;
int32 right = 2;

}
message DivideReply {

float result = 1;
}

calculator.proto

gRPC protocol stack

Dr. Balázs Simon, BME, IIT 38

IP

TCP

HTTP/2

ProtoBuf

gRPC

C#/Java/...

Summary

Dr. Balázs Simon, BME, IIT 39

Summary

 Binary protocols are more efficient, although less readable

 Protocol Buffers provide binary compatibility between
different programming languages

 HTTP/2 is a more efficient model for the web

 gRPC is a high performant RPC solution
 can be used instead of SOAP and REST

 combines their advantages:
 simplicity

 strongly typed interface

 interoperability between languages

Dr. Balázs Simon, BME, IIT 40

