
Microservices
Szolgáltatásorientált rendszerintegráció

Service-Oriented System Integration

Dr. Balázs Simon

BME, IIT

Overview

 Monolithic applications

 Microservices

 Containers for microservices

 Docker

Dr. Balázs Simon, BME, IIT 2

Monolithic applications

Dr. Balázs Simon, BME, IIT 3

Monolithic applications

 Cost, time, and complexity of managing HW strongly
influences application development

 Before cloud systems, it was hard to dynamically assign
HW resources: the infrastructure was static
 DB servers, application servers, web servers, load-balancers,

caches

 Applications were designed for a fixed HW infrastructure

 Typically: three monolithic tiers
 DB + business logic + web

 Each tier scales independently
 each tier is a monolithic application on its own
 although they can contain multiple components
 interfaces only between tiers

Dr. Balázs Simon, BME, IIT 4

Web

Business
logic

DB

Computer/VM Computer/VM Computer/VM

Computer/VM Computer/VM

Computer/VM Computer/VM Computer/VM Computer/VM

Scaling applications with monolithic tiers

Dr. Balázs Simon, BME, IIT 5

Web

Business logic

DB Backup DBreplication

Web Web

Business logic Business logic Business logic

Load balancer + cache

Load balancer + cache

Cache

St
at

el
es

s
St

at
e

Monolithic applications

 Advantages:
 simpler to design
 there is a single product with a single version

 easier to maintain consistency between components

 faster call between components within a single tier

 Disadvantages:
 the whole application has to be developed and deployed in one piece
 the entire tier has to be retested and redeployed when something is

changed
 can be slow
 deploying a new version without downtime is a challenge

 tight coupling between components within a tier:
 components cannot be scaled independently, the whole tier has to be scaled
 harder to test individual components

 communication between tiers is slow
 caches are needed between them

Dr. Balázs Simon, BME, IIT 6

Microservices

Dr. Balázs Simon, BME, IIT 7

Application

Microservices

Dr. Balázs Simon, BME, IIT 8

Web

Business logic

DB

Monolithic Microservices

Idea: split monolithic applications into smaller components, which can be
developed, deployed and scaled independently from each other

Computer/VM Computer/VM Computer/VM

Load balancer

Application

Scaling:

Application built of microservices

 The application is composed of many small services

 Services are developed and tested independently by small
teams

 Services are deployed independently

 Services are versioned independently

 Services scale independently

 The entire application evolves as the sum of all services

Dr. Balázs Simon, BME, IIT 9

Application

Properties of microservices

 Each service deals only with one business functionality

 Services can be written in any programming language and can
use any framework

 Services run in their own containers deployed across a cluster
of machines

 Services can optionally have internal state

 Services interact with other microservices over well-defined
interfaces and protocols

 Services have unique names used to resolve their location

 Services and their internal states can be versioned

 Services remain consistent and available in the presence of
failures

 Services report health and diagnostics

Dr. Balázs Simon, BME, IIT 10

One business functionality

 Each service encapsulates a simple business functionality
 e.g. user management, accounting, shipping, etc.

 Development is driven more by business scenarios than
technology (unlike the tiered approach)

 The development team deals with the whole
implementation stack
 user-interface, persistent storage, communication

 teams are cross-functional

 A microservice is a product not a project
 the team is not disbanded when the service is completed

 the team maintains the service

Dr. Balázs Simon, BME, IIT 11

Any programming language and any framework

 Different tasks require different technologies
 maybe the performance is important: C++
 maybe the ease of managed development is important: C#, Java
 maybe the user experience is important: JavaScript
 etc.

 With microservices the different parts of the application can
be implemented with the appropriate technologies

 This eliminates any long-term commitment to a technology
stack: services can be rewritten easily with a new technology
stack without affecting other services

 However:
 different technologies require different runtime frameworks: each

service needs its own runtime environment
 the services have to communicate with each other through a

framework independent communication technology

Dr. Balázs Simon, BME, IIT 12

Containers

 Containers provide the runtime environment for
microservices
 the required frameworks and technologies specific to the

implementation of the given service

 A container can be tailored to provide only the required
libraries
 all the required libraries are included

 unnecessary libraries are not included

 Containers ensure that only the required amount of
resources are used by the process in which the service
runs

 Containers isolate services from each other

Dr. Balázs Simon, BME, IIT 13

Optional internal state

 Each microservice manages and stores its own state,
usually in its own database (SQL or NoSQL)

 Each service is responsible for scaling both code and state
together to meet the demands of the service

 The state of the application is distributed among multiple
services

 The states of different services have to be strictly
separated from each other
 don’t do joins between tables of different services
 don’t create dependencies at the storage layer
 otherwise, you can't scale individual components

 Downside: views and queries involving multiple services
have a huge communication overhead

Dr. Balázs Simon, BME, IIT 14

Communication with other microservices

 Services interact with other microservices over well-
defined interfaces and protocols
 just like SOA

 Communication can be any technology
 but usually it is REST

 messages are typically JSON or XML, but for efficiency they can
be binary (e.g. Protocol Buffers)

 Microservices require an interface description language
 so that clients can be implemented easily

 should be a strongly typed language
(e.g. Swagger, proto, WSDL, etc.)

 Communication has a huge overhead compared to in-
memory calls of monolithic applications

Dr. Balázs Simon, BME, IIT 15

Resolving microservices

 Microservices need to find other microservices
 physical addresses of other services shouldn’t be hardwired

 Microservices need addressable (logical) names
 independent from the infrastructure that they are running on

 Service deployment and discovery need to be in
interaction
 when a service is deployed: a new physical name is registered

for the logical name
 when a service is being discovered: the logical name is resolved

to a physical name

 A service registry is needed for:
 service discovery
 load balancing
 failover

Dr. Balázs Simon, BME, IIT 16

Versioning code

 Services evolve over time
 Usually this is solved by versioning
 But the preference in the microservices world is to use

versioning only as a last resort
 If there are multiple incompatible versions of the same service

used by multiple clients:
 developers have to maintain bug fixes in all supported versions
 old versions can be easily broken because of the shared code

pathways
 there is too much operational complexity: service management,

monitoring, support, discovery, testing, etc.

 The rule is: be liberal in what you accept and conservative in
what you send (Postel's Law)
 services should be backwards compatible with older versions

 Create a new version only if it is necessary to introduce a
breaking change in the public interface of the service

Dr. Balázs Simon, BME, IIT 17

Versioning internal state

 Services store their internal state in their own databases

 A change in the service may require updating the
database schema: the tables have to be upgraded to the
new schema

 This mandates a new version of the service:
 if a newer version of a microservice fails during upgrade, the

code and state need to be rolled back to an earlier version

 it is common to upgrade a microservice for a specific set of
customers to test new functionality before rolling it out more
widely

 Even if the public API doesn’t change but the internal state
representation does, it is a good idea to introduce a new
version of the service

Dr. Balázs Simon, BME, IIT 18

Consistency and availability in the presence of failures

 We need to detect when a microservice fails (a hard
problem on its own)

 We also need to restart the failed microservice
 restart happens often on another machine for availability

reasons
 the saved state of the failed service has to be restored

 Microservices have to be resilient:
 in code: when the service is restarting
 in data: consistency and no data loss

 A resilient microservice has to be able to decide whether:
 an upgrade failed
 it can continue with the new version
 it should roll back to the previous version
 enough machines are available to keep moving forward

Dr. Balázs Simon, BME, IIT 19

Report health and diagnostics

 A microservice must report its health and diagnostics
 operating the services is very difficult with no insight

 How to log health and diagnostic events must be agreed
upon by all teams
 a standard logging format is needed for all services

 Diagnostic events have to be correlated
 challenges: clock skews and determining event order across a

set of independent services

 Health is about the microservice reporting its current
state
 state of deployment
 state of an ongoing upgrade
 challenge: creating self-healing services

Dr. Balázs Simon, BME, IIT 20

Microservices

 Definition:
 The microservice architectural style is an approach to developing

a single application as a suite of small services, each running in
its own process and communicating with lightweight
mechanisms, often an HTTP resource API. These services are
built around business capabilities and independently
deployable by fully automated deployment machinery. There is
a bare minimum of centralized management of these services,
which may be written in different programming languages and
use different data storage technologies.

– James Lewis and Martin Fowler

 Microservices build a lightweight and fine-grained
Service-oriented architecture (SOA)

Dr. Balázs Simon, BME, IIT 21

Drawbacks and
challenges of
microservices

Dr. Balázs Simon, BME, IIT 22

Drawbacks of microservices

 Services form information barriers

 Microservices introduce additional complexity and new
problems to deal with:
 network latency, message formats, load balancing and fault

tolerance

 Inter-service calls over a network have a higher cost than
in-process calls within a monolithic service process:
 network latency and message processing time

 Moving responsibilities between services is more difficult:
 requires communication between different teams, rewriting the

functionality in another language or fitting it into a different
infrastructure

 Small services can lead to too many services
 internal modularization may lead to a simpler design

Dr. Balázs Simon, BME, IIT 23

Drawbacks of microservices

 Additional complexity of creating a distributed system
 developer tools/IDEs are oriented on building monolithic applications
 testing is more difficult
 developers must implement the inter-service communication

mechanism
 implementing use cases that span multiple services without using

distributed transactions is difficult
 implementing use cases that span multiple services requires careful

coordination between the teams

 Deployment complexity
 Operational complexity of managing a system comprised of

many different service types
 If there is a problem it is hard to see the exact cause and effect
 The complexity of a monolithic application is only shifted into

the network, but persists:
 You can move it about but it's still there!

— Robert Annett: Where is the complexity?

Dr. Balázs Simon, BME, IIT 24

Challenges of microservices

 When to use the microservice architecture?

 How to decompose the application into services?

 How to solve the problem of information barriers
hindering productivity?

 How to maintain data consistency?

 How to implement queries?

 How do services communicate with each other?

 How do services find each other?

 How to manage the dependency hell between services?

Dr. Balázs Simon, BME, IIT 25

Containers for
microservices

Dr. Balázs Simon, BME, IIT 26

Containers for microservices

 A container instance hosts one or more microservices
(typically only one)

 The container must provide the runtime environment and
all the libraries required by the microservice

 The application can be built from many microservices, and
each of them may require a different programming
language, runtime environment and a set of libraries

 Selecting the container technology depends on what kind
of runtime and libraries the services need

 Container types:
 virtual machines (e.g. VMWare)
 modular operating system (e.g. Docker)
 modular application server (e.g. Thorntail Swarm)

Dr. Balázs Simon, BME, IIT 27

Thorntail Swarm

 Modular application server developed by Red Hat

 Designed for packaging and running Java EE applications as
microservices

 Microservices can be packaged with just enough of the server
runtime

 Fractions (features):
 they are modules implementing microservice patterns and different parts of

Java EE
 only the required fractions have to be imported
 examples for fractions:

logging, JPA, REST, web, security, transactions, monitoring, Spring, ...

 Two kinds of runtime jars can be built:
 simple jar: contains only the application code, takes dependencies from the

local Maven repository
 über-jar: contains the application code along with all the necessary parts

(fractions and all their dependencies) of WildFly to support it

 Applications previously running on the WildFly Application Server
can be split into microservices which can then run in a Thorntail
Swarm

Dr. Balázs Simon, BME, IIT 28

Docker

 Can be used to host microservices or just to simply run
applications in an isolated environment

 Standard packaging format for containers

 Isolated containers are portable to any machine running
Docker

 Services and applications can be written in any
programming language

 Docker Compose defines an application model that
supports multiple Docker-packaged microservices

 Docker Swarm serves as a cluster manager

 Docker has a great tooling ecosystem

Dr. Balázs Simon, BME, IIT 29

Kubernetes

 Originally developed by Google

 Cluster management for Docker containers

 Open-source system for automating deployment,
operations, and scaling of containerized applications

 Containers that make up an application can be grouped
into logical units for easy management and discovery

 Kubernetes builds on Google’s experiences running large
scale services

Dr. Balázs Simon, BME, IIT 30

Docker

Dr. Balázs Simon, BME, IIT 31

Docker

 Docker:
 tool for deploying applications in a sandbox (called container)
 applications can be packaged with all their dependencies into a

standardized unit (called image)

 Containers are instances of images

 Difference compared to Virtual Machines:
 the guest and the host are both Linux
 the container runs natively on the host
 the container reuses the host operating system’s kernel and access to

hardware
 only the additional operating system libraries and 3rd party libraries

have to be added

 The host operating system can be:
 Linux, Mac
 Windows: lately, Docker uses the Windows Subsystem for Linux

Dr. Balázs Simon, BME, IIT 32

VMContainer

Docker vs. Virtual Machine

Dr. Balázs Simon, BME, IIT 33

Hardware

Host OS

Docker

Hardware

Hypervisor

Guest OS Guest OS

Bins/Libs Bins/LibsBins/Libs Bins/Libs

App A App B App A App B

Using Docker

Dr. Balázs Simon, BME, IIT 34

Internet

Docker Hub

image A

image B

Local Computer

Docker
Client

Docker Daemon

container A

image A

volume

container A

image A

network

run

pull

push

network volume

Docker concepts

 Image:
 container template

 delta of libraries and files compared to the Linux kernel

 Container:
 instance of an image

 instantiated by running the image of the application

 Network:
 LAN between containers

 Volume:
 file/folder on the host machine mapped into the container

 persists even if the container is deleted

Dr. Balázs Simon, BME, IIT 35

Docker concepts

 Docker Daemon:
 background service running on the host

 manages building, running and distributing Docker containers

 clients talk to this daemon process

 Docker Client:
 command line tool that allows the user to interact with the

daemon

 there are other forms of clients, e.g. Kinematic GUI.

 Docker Hub:
 registry of Docker images

 lists all available Docker images

 we can host our own Docker registries

Dr. Balázs Simon, BME, IIT 36

Docker image

 Image:
 container template
 delta of libraries and files compared to the Linux kernel
 has name + version

 version is optional, if missing, it means latest version

 Images on Docker Hub:
 busybox, ubuntu, mongo, postgres, mysql, node, python,

openjdk, wordpress, ...

 Commands:
 fetch the busybox image from a registry (e.g. Docker Hub):

 fetch Ubuntu version 12.04:

 list the downloaded images on our computer:

37

$ docker pull busybox

$ docker images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
busybox latest c51f86c28340 4 weeks ago 1.109 MB

$ docker pull ubuntu:12.04

Docker image

 Base vs. child images:
 Base image:

 no parent image, usually an OS image
 e.g. busybox, ubuntu, debian

 Child image:
 builds on base images and add additional functionality

 Official vs. user images:
 both can be base or child
 Official image:

 officially maintained and supported by the Docker team
 image names are simple names, e.g., busybox, ubuntu, mysql, python, ...

 User image:
 created and shared by users
 typically they build on base images and add additional functionality
 image names are formatted as: <username>/<image name>

Dr. Balázs Simon, BME, IIT 38

Docker container

 Container:
 instance of an image
 instantiated by running the image of the application

 Commands:
 run a container based on the busybox image:

 in case of busybox it just boots up and exits, but most containers don’t exit,
they keep running

 run a shell command in busybox:

 see running containers:

 see all containers (even recently exited ones):

39

$ docker run busybox

$ docker run busybox echo "hello from busybox"
hello from busybox

$ docker ls

$ docker ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS NAMES
305297d7a235 busybox "uptime" 11 minutes ago Exited (0) 11 minutes ago distracted_goldstine
ff0a5c3750b9 busybox "sh" 12 minutes ago Exited (0) 12 minutes ago elated_ramanujan

Docker container

 Commands:
 run container in interactive mode, i.e. allow running commands

inside the container:

 run a container, that does not stop, in detached mode:

 stop a running container using its name:

 stop and remove a container:

 run a container and remove it automatically after it stops:

Dr. Balázs Simon, BME, IIT 40

$ docker run -it busybox sh
/ # ls
bin dev etc home proc root sys tmp usr var
/ # uptime
05:45:21 up 5:58, 0 users, load average: 0.00, 0.01, 0.04

$ docker run -d mysql --name my_db

$ docker stop my_db

$ docker rm my_db

$ docker run --rm -d mysql --name my_db

Dockerfile

 You can create your own image using a Dockerfile

 Dockerfile:
 simple text-file

 automates the image creation process

 contains a list of commands

 the Docker client calls these commands while is creates an
image

 Building and publishing an image as a user named “soi”:
 build an image (the file Dockerfile is in the current directory):

 prepare the image by tagging it:

 publish the image to the repository (e.g. Docker Hub):

Dr. Balázs Simon, BME, IIT 41

$ docker image build -t my_image .

$ docker image tag my_image soi/my_image

$ docker image push soi/my_image

Dockerfile example

Dr. Balázs Simon, BME, IIT 42

FROM node:6-alpine

EXPOSE 3000

RUN apk add --update tini \
&& mkdir -p /usr/src/app

WORKDIR /usr/src/app

COPY . .

RUN npm install \
&& npm cache clean --force

CMD ["/sbin/tini", "--", "node", "./bin/www"]

create an image based on the
node image version 6-alpine
i.e. based on NodeJS

publish port

run these commands
inside the container

set the working directory inside the container

copy the contents of the current host directory
into the container’s current directory

run these commands
inside the container

run this command with arguments
when starting the container
i.e. start the NodeJS server

Docker networking

 You can create virtual networks between containers

 Docker network defaults:
 each container is connected to a private virtual network

"bridge"

 each virtual network routes through NAT firewall on host IP

 all containers on a virtual network can talk to each other

 Best practice is to create a new virtual network for each
application

 Commands:
 create a new virtual network:

 run a container, connect it to this network, and then publish its
internal port (3000) through the host’s network (8080):

Dr. Balázs Simon, BME, IIT 43

$ docker network create my_lan

$ docker container run --net my_lan -p 8080:3000 node

Docker volumes

 Containers are usually immutable and ephemeral
 containers cannot store data by themselves

 An external storage is needed on the host
 this will be preserved even if the container is deleted

 Two kinds of storage: volumes and bind mounts

 Volume:
 a file on the host
 can have a name
 commands:

 create a volume:
 run a container with an attached volume:

 Bind mount:
 maps a host file or directory to a container file or directory
 commands:

 run a container with bind mount on Linux:

 run a container with bind mound on Windows:

Dr. Balázs Simon, BME, IIT 44

$ docker volume create my_db

$ docker container run -v my_db:/var/lib/postgresql/data postgres

$ docker container run -v /home/soi/my_db:/var/lib/postgresql/data postgres

$ docker container run -v //c/Users/soi/my_db:/var/lib/postgresql/data postgres

Docker Compose

 Running commands one-by-one is OK for single containers

 But usually we need multiple containers
 from different images
 connected through different networks
 using different volumes

 We need a reproducible way to run and connect the containers

 Docker Compose can manage multiple containers through a
Compose file
 the compose file describes the architecture of the system

 Commands:
 create and start volumes, networks and containers:

 start containers:

 stop containers:

 stop and delete containers (but not volumes!):

Dr. Balázs Simon, BME, IIT 45

$ docker-compose up

$ docker-compose down

$ docker-compose start

$ docker-compose stop

Compose file example

46

version: "3"

services:
drupal:
image: drupal
ports:
- 8080:80

volumes:
- drupal-modules:/var/www/html/modules
- drupal-profiles:/var/www/html/profiles
- drupal-sites:/var/www/html/sites
- drupal-themes:/var/www/html/themes

postgres:
image: postgres:9.6
environment:
POSTGRES_PASSWORD: mypass

volumes:
- drupal-data:/var/lib/postgresql/data

volumes:
drupal-data:
drupal-modules:
drupal-profiles:
drupal-sites:
drupal-themes:

create volumes

compose file version

containers

from the latest drupal image

from the postgres 9.6 image

publish the container’s port 80 through the host as 8080
mapping volumes to the container’s internal folders

environment variables

no need to publish ports
for postgres, since the two
containers see each other
through the default virtual
network

container name, and its DNS name through the virtual network

Docker Swarm

 A clustering solution built inside Docker

 Not enabled by default
 if enabled, the following commands are available:

 Can store and provide secrets for containers:
 passwords and private keys stored through logical names
 actual value can be different in production and in development

 Provides:
 advanced routing
 production grade compose (instead of Docker Compose)
 rolling update of containers with health-check and rollback

Dr. Balázs Simon, BME, IIT 47

$ docker swarm
$ docker node
$ docker service
$ docker stack
$ docker secret

Docker Logs

 Containers dump logs
 the OS running inside

 the servers running inside

 etc.

 Useful for troubleshooting

 Commands:
 see logs:

 see logs and follow them:

Dr. Balázs Simon, BME, IIT 48

$ docker logs my_container

$ docker logs -f my_container

Summary

Dr. Balázs Simon, BME, IIT 49

Summary

 Microservices:
 application is split into multiple small services

 services can be written in any programming language

 services run in their own containers

 services form information barriers

 Docker:
 tool for deploying applications in a sandbox (called container)

 applications can be packaged with all their dependencies into a
standardized unit (called image)

 networks

 volumes

 compose

 swarm

Dr. Balázs Simon, BME, IIT 50

