
3/23/2012

1

Basics of
programming

Balázs Simon

FILE HANDLING

2© Simon Balázs, BME IIT, 2012.

File handling

� Problem:
�Data that survives the program execution

� Solution:
�Storing data in files

� Tasks:
�Write data to file from memory

�Read data from file to memory

3© Simon Balázs, BME IIT, 2012.

Typical file handling routines

� Create new file
� Open existing file
� Read from file
�Write to file

� Close file

4© Simon Balázs, BME IIT, 2012.

File modes

� Text file
�Like a TXT file

�Humanly readable

�Divided into lines

� Binary file
�Computer readable (humanly not really)

�Exact format is application specific

5© Simon Balázs, BME IIT, 2012.

FILE HANDLING IN C

6© Simon Balázs, BME IIT, 2012.



3/23/2012

2

General file handling routines

� File pointer (type of the variable that references
the file):
� FILE*

� Opening a file:
� FILE* fopen(char* filename, char* mode)

� Closing a file:
� fclose(FILE* fp)

� Flushing a file:
� fflush(FILE* fp)

� Positioning in the file:
� fseek(FILE* fp, long offset, int origin)

7© Simon Balázs, BME IIT, 2012.

FILE HANDLING IN C

Text files

8© Simon Balázs, BME IIT, 2012.

Text files

� Opening and closing a text file:

9© Simon Balázs, BME IIT, 2012.

#include <stdio.h>

int main()

{

FILE* fp = NULL;

fp = fopen("a.txt", "rt");

...

fclose(fp);

}

Opening mode:
r – open for reading
w – open or create new for writing
a – open or create new for append
r+ – open for reading and writing,

start at the beginning
w+ – overwrite for reading and 

writing, start at the beginning
a+ – open for reading and writing,

start at the end

t – text file

Writing text files

� Like printf, but into a file:
� fprintf(FILE* fp, char* format, ...)

� A single character:
� fputc(int c, FILE* fp)

10© Simon Balázs, BME IIT, 2012.

Reading text files I.

� Like scanf, but from a file:
� int fscanf(FILE* fp, char* format, ...)

�returns the number of items successfully read, 
or EOF if end of file reached 

� A single character:
� int fgetc(FILE* fp)

�returns 0..255 if a valid character is read, or 
EOF if end of file reached

11© Simon Balázs, BME IIT, 2012.

Reading text files II.
� Safely read a single line into string:
� char* fgets(char* str, 

int maxlength, 
FILE* fp)

�maxlength is the maximum length of the string 
inlcluding the terminating zero character
� reads at most maxlength-1 characters, or less if end 

of line or end of file is reached
� returns the str pointer on success, or NULL on failure

� Reading from a string (use after fgets()):
� int sscanf(char* str, char* format, ...)

� returns the number of items successfully read

12© Simon Balázs, BME IIT, 2012.



3/23/2012

3

Text file handling sample

13© Simon Balázs, BME IIT, 2012.

#include <stdio.h>

int main()

{

FILE* fp = NULL;

char line[80];

int i;

double d;

fp = fopen("a.txt", "rt");

while (fgets(line, 80, fp) != NULL)

{

sscanf(line, "%d %lf", &i, &d);

}

fclose(fp);

}

FILE HANDLING IN C

Binary files

14© Simon Balázs, BME IIT, 2012.

Binary files

� Opening and closing a binary file:

15© Simon Balázs, BME IIT, 2012.

#include <stdio.h>

int main()

{

FILE* fp = NULL;

fp = fopen("a.dat", "rb");

...

fclose(fp);

}

Opening mode:
r – open for reading
w – open or create new for writing
a – open or create new for append
r+ – open for reading and writing,

start at the beginning
w+ – overwrite for reading and 

writing, start at the beginning
a+ – open for reading and writing,

start at the end

b – binary file

Writing binary files

� Write from a memory buffer:
�int fwrite(void* memPtr,

int elemSize, 
int numElems, 
FILE* fp);

�memPtr: address of the buffer
�elemSize: size of an element in memory (e.g. size 

of an array item)
�numElems: number of elements in memory (e.g. 

array length)
� fp: the file pointer

16© Simon Balázs, BME IIT, 2012.

Reading binary files

� Read into a memory buffer:
� int fread(void* memPtr,

int elemSize, 
int numElems, 
FILE* fp);

�memPtr: address of the buffer
� elemSize: size of an element in memory (e.g. size of 

an array item)
� numElems: number of elements in memory (e.g. array 

length)
� fp: the file pointer
� returns the number of items actually read

17© Simon Balázs, BME IIT, 2012.

Checking end of file

� To check whether the end of file is 
reached:
�int feof(FILE* fp)

�returns non-zero if end of file is reached

�Only after an unsuccessful read!

18© Simon Balázs, BME IIT, 2012.



3/23/2012

4

Binary file handling sample

19© Simon Balázs, BME IIT, 2012.

#include <stdio.h>

int main()

{

FILE* fp = NULL;

int count = 0;

double d[10];

fp = fopen("a.dat", "rb");

do

{

count = fread(d, sizeof(double), 10, fp);

for (int i = 0; i < count; ++i)

{ 

printf("%lf\n", d[i]); 

}

}

while (!feof(fp));

fclose(fp);

}

EXERCISES

20© Simon Balázs, BME IIT, 2012.

File handling exercises

� Text files
� 1. Read in lines from a text file and print them to the 

standard output
� 2. Read in lines from a text file and print those lines 

that contain “apple” into another text file
� Hint: char* strstr(char* str1, char* str2)

� Binary files
� 3. Read integer numbers from the standard input and 

write them into a binary file
� 4. Read integer numbers from a binary file and print 

them to the standard output
� 5. Read/write complex numbers from/to binary files

21© Simon Balázs, BME IIT, 2012.


