Basics of
programming

Balazs Goldschmidt

Recursive functions

ol 4 ©BMEIIT, Balazs 2

" JEE
Recursive functions

= Problem
Let's calculate the nt" factoriall

Eint fact(int x) {

Basics of programming © 2012, Dr. Goldschmidt Balazs, BME IIT 3

Recursive functions

m Problem
Let's calculate the nth factorial!
Without loops: n! = n*(n-1)!

int fact(int x) {
if (x == 0) return 1;
else return x*fact(x-1);

}

Basics of programming © 2012, Dr. Goldschmidt Balazs, BME IIT

Recursive functions

m Sometimes recursion is simpler

m Problem
calculate nt fibonacci number!
definition: a; =1, a,=1, a, = a,,+a,»

int fibo(int x) {
i if (x==1 || x==2) return 1;
else return fibo(x-1)+fibo(x-2);

Basics of programming © 2012, Dr. Goldschmidt Balazs, BME IIT

Recursive functions

m Try fibonacci with loops!
definition: a, =1, a, = 1, a, = a,,+a,,

int fibo(int x) {
int i, al, a2, a3;
al = a2 = a3 = 1;

for (i = 3; i <= x; i++) {
a2 = a3;
al = a2;
a3 = al+a2;

}

return a3;

}

Basics of programming © 2012, Dr. Goldschmidt Balazs, BME IIT

'_
Towers of hanoi

m Problem:
1 we have three rods and n disks
1 move the disks on first rod to the second
Conly 1 piece a time and always put smaller on bigger

Basics of programming © 2012, Dr. Goldschmidt Balazs, BME IIT 7

'_
Towers of hanoi solution

= Print out each move

ivoid hanoi(int n, int from, int to, int help) {
i if (n == 0) return;
hanoi(n-1, from, help, to);
printf("disk %d, %d -> %d\n", n, from, to);
hanoi(n-1, help, to, from);

A
2

3

Basics of programming © 2012, Dr. Goldschmidt Balézs, BME IT 8

'_
Towers of hanoi solution

= Print out each move

ivoid hanoi(int n, int from, int to, int help) {
i if (n == 0) return;
hanoi(n-1, from, help, to);
printf("disk %d, %d -> %d\n", n, from, to);
hanoi(n-1, help, to, from);

3

;ii

Basics of programming © 2012, Dr. Goldschmidt Balézs, BME T)

" JEE
Towers of hanoi solution

= Print out each move

ivoid hanoi(int n, int from, int to, int help) {
i if (n == 0) return;
hanoi(n-1, from, help, to);
printf("disk %d, %d -> %d\n", n, from, to);
hanoi (n-1, help, to, from);

g A
T W N

Basics of programming © 2012, Dr. Goldschmidt Balézs, BME IT 10

" JEE
Towers of hanoi solution

= Print out each move

ivoid hanoi(int n, int from, int to, int help) {
i if (n == 0) return;
hanoi(n-1, from, help, to);
printf("disk %d, %d -> %d\n", n, from, to);
hanoi(n-1, help, to, from);

V'
A2

3

Basics of programming © 2012, Dr. Goldschmidt Balézs, BME IT 1

" JEE
Rules of recursion

m Only one step is to be solved
e.g.: moving a single disk
m Rest is done by a new call
e.g.: moving n-1 disks
m Always have an exit
e.g.: 0 disks needs no move
m Local variables are unique in each call
m Too deep recursion should be avoided

Basics of programming © 2012, Dr. Goldschmidt Balazs, BME IIT 12

" JEE
Exercise

m Solve factorial problem
m Print out in each function
the depth of recursion
the address of parameter x
use %p in printf: printf("%p\n", &x);

Basics of programming © 2012, Dr. Goldschmidt Balazs, BME IIT 13

Recursive data structures

ol 4 ©BMEIT, Balazs 14

" JEE
Store data in order

m Let's store data in order

array

= with each insertion n/2 elements should be moved
on average

binary tree
= stores elements in nodes of a tree
= each elementis usually at most log,n far from root

Basics of programming © 2012, Dr. Goldschmidt Balazs, BME IIT 15

" JEE
Binary tree

m Data structure

i typedef struct btree {

i int n;

i struct btree *left, *right;
i} btree;

m Rules
leaves have null pointers for children
for each node x
= x->left->n < x->n
= x->right->n >= x->n

Basics of programming © 2012, Dr. Goldschmidt Balazs, BME IIT 16

" JEE
Binary tree: empty tree and
creation

m An empty tree is a NULL pointer

Ebtree* tree = NULL;

m Create one element tree

btree* create(int n) {
bintree* t;
t = (btree*)malloc(sizeof(btree));
t->left = t->right = NULL;
t->n = n;
return t;

}

Basics of programming © 2012, Dr. Goldschmidt Balazs, BME IIT 17

" JEE
Binary tree: insertion

m Algorithm
m Insert number n into tree t
if tis empty
nis new tree
otherwise
if n < (t->n), insert into t->left
otherwise insert into t->right

Basics of programming © 2012, Dr. Goldschmidt Balazs, BME IIT 18

Binary tree: insertion

m Insert number n into tree t

btree* insert(btree* t, int n) {
if (t == NULL) {
t = create(n);

} else {
if (n < t->n)
n->left = insert(n->left, n);
else
n-> right = insert(n->right, n);
}
return t;

Basics of programming © 2012, Dr. Goldschmidt Balazs, BME IIT

19

Binary tree: contains

m Contains: return true if tree contains n

int contains(btree* t, int n) {
if (t == NULL) {

return 0;
} else {
if (t->n == n)
return 1;

else if (n < t->n)

return contains(t->left, n);
else

return contains(t->right, n);

Basics of programming © 2012, Dr. Goldschmidt Balazs, BME IIT

20

Binary tree traversal

m How can we traverse a binary tree?

inorder

= left subtree, root, right subtree

= e.g. printing data in increasing order
preorder

= root, left subtree, right subtree
postorder

= |left subtree, right subtree, root

Basics of programming © 2012, Dr. Goldschmidt Balazs, BME IIT

21

" JEE
Binary tree algorithms

m Most algorithms are recursive
empty tree
root node
left or right subtree
m Algorithms for exercise
depth of tree
number of nodes, leaves, parents
printing out: inorder, preorder, postorder
deleting a tree

Basics of programming © 2012, Dr. Goldschmidt Balazs, BME IIT

22

