
1

Basics of
programming

Balázs Goldschmidt

Objektumorientált SW-tervezés © BME IIT, Goldschmidt Balázs 2

Indirect reference: pointers

Problem: family tree

� Let's declare a struct for a human

� Store
� age
� height
� father and mother

� Size?

� |human| = |int| + |double| + 2|human|

� |human| = -(|int|+|double|) �

Basics of programming © 2012, Dr. Goldschmidt Balázs, BME IIT 3

struct human;
struct human {

int age;
double height;
struct human father, mother;

};

2

Solution: family tree w/ pointers

� Let's store just a pointer to parents

� Store
� age
� height
� ptr to parents

� Size?

� |human| = |int| + |double| + 2|human_ptr|

= 20 bytes

Basics of programming © 2012, Dr. Goldschmidt Balázs, BME IIT 4

struct human;
struct human {

int age;
double height;
struct human *father, *mother;

};

Handling pointers
� Pointer definition: type with *
� int*, double*, etc.

� int *i, j, *k; /* i and k are ptrs */

� Variables and operators
� *: value pointed to by pointer (dereferencing)
� &: address of the variable (referencing)

Basics of programming © 2012, Dr. Goldschmidt Balázs, BME IIT 5

int i=1, j=2, k=5;
int *ip, *jp;
ip = &i;
jp = &jp;
k = (*ip)+(*jp);
(*ip) = 12;

printf("%d\n", *ip);

ip = jp;
(*jp) += 3;
printf("%d\n", *ip);

Parameter passing

� Function parameters can be pointers
� less overhead
� data may be corrupted

Basics of programming © 2012, Dr. Goldschmidt Balázs, BME IIT 6

int getMax(int* p, int n) {
int max = p[0], i;
for (i = 1; i < n; i++) {

if (max < p[i]) p[i] = max;
if (max < p[i]) max = p[i];

}
return max;

}

3

Return values

Address to local variables mustn't be
returned!

Basics of programming © 2012, Dr. Goldschmidt Balázs, BME IIT 7

int* foo(int* p) {
return p;

}

int a = 13, *b;
b = foo(&a);
*b = 10;
printf("%d\n", a);

int* bar() {
int q;
return &q;

}

int *b;
b = bar();
*b = 10;

Pointer arithmetic

� Operators
� +, -, etc.
� adding pointer and int results pointer
� eg.: p1 = p0+13;

� Stepping is type dependent
� p+1 points to next element (not next byte)
� size is deduced from type of p

Basics of programming © 2012, Dr. Goldschmidt Balázs, BME IIT 8

Arrays and pointers

� Array variables are considered pointers to first
element

� Array expressions use pointer arithmetic
� a[x] ≡ *(a+x)

Basics of programming © 2012, Dr. Goldschmidt Balázs, BME IIT 9

int a[3], *p;
a[0] = 10;
a[1] = 20;
a[2] = 30;

p = a;
printf("%d\n", p);
*p = 2;

p[2] = 13;
*(p+1) = 50;
*(a+2) = 10;

4

Dynamic memory handling

� Allocate single element of type T
� T *p = (T*) malloc (sizeof(T));

� e.g.: T is int
int *p = (int*) malloc (sizeof(int));

� Allocate array of T having n elements
� T *p = (T*) malloc (n*sizeof(T));

� e.g.: T is int, 10 elements
int *p = (int*) malloc (10*sizeof(int));

� If out of memory, return NULL
� NULL is the pointer that points nowhere

Basics of programming © 2012, Dr. Goldschmidt Balázs, BME IIT 10

Lifetime and deallocation
� All dynamically allocated values exist until

deallocated
� lifetime is longer than a single function call

� Deallocation
� free(p);

� both for single and array elements

Basics of programming © 2012, Dr. Goldschmidt Balázs, BME IIT 11

int* getN(int n) {
return (int*)malloc(n*sizeof(int));

}

int *p = getN(10);
p[3] = 12;
free(p);

Resizing dynamic arrays

� Realloc

� has more space after orig: simple allocation
� pointer remains same

� no more space after orig: reallocation
� return pointer is new
� data copied, original freed

� out of memory: returns NULL

Basics of programming © 2012, Dr. Goldschmidt Balázs, BME IIT 12

int *tmp, *p = ...;
tmp = realloc(p, 10*sizeof(int));
if (tmp != NULL) p = tmp;

5

Objektumorientált SW-tervezés © BME IIT, Goldschmidt Balázs 13

Complex types: strings

String

� Strings are arrays of characters
� "abcde" -> {'a','b','c','d','e','\0'}
� last character is always '\0'
� string type is char[] or char*

� String handling functions: string.h
� strcmp, strcpy, strcat, etc.
� strncmp, strncpy, strncat, etc.
� strlen

Basics of programming © 2012, Dr. Goldschmidt Balázs, BME IIT 14

String exercise

� Implement standard functions
� int strlen(char* s1)

� indexing
� increment

� int strcmp(char* s1, char* s2)

� return value
� -1 if s1<s2

� 0 if s1==s2

� +1 if s1>s2

Basics of programming © 2012, Dr. Goldschmidt Balázs, BME IIT 15

