
1

Basics of
programming

Balázs Goldschmidt

Basics of programming © 2012, Dr. Goldschmidt Balázs, BME IIT 2

Introduction

� Programming
� algorithms + data structures = programs

� abstraction and formalization
� garbage in, garbage out

� syntax vs. semantics

� top-down vs. bottom-up design

� Features of C
� mother tongue of UNIX

� lowest level high level language
� many inconvenient features
� easy to make a mistake

Hello world

Basics of programming © 2012, Dr. Goldschmidt Balázs, BME IIT 3

#include <stdio.h>

/* this is the
entry point */

int main() {

printf(”Hello world!”);

return 0;
}

header file

comment

program's
entry point

statement

block start

block end

2

Structure of a C program

� Includes

� Functions
� header (mandatory)
� may be declared multiple times
� for same function always the same signature

� body (optional)
� block start and end is mandatory
� variable declarations
� statements

� return clause

Basics of programming © 2012, Dr. Goldschmidt Balázs, BME IIT 4

Variables

� Store data

� Have
� type: what kind of data they can store
� eg. real, integer, character, etc.

� name: refers to a variable
� value: stored by variable
� must be initialized
� uninitialized variables hold garbage

� Must be declared at the beginning of a function
� outside functions: global variables

Basics of programming © 2012, Dr. Goldschmidt Balázs, BME IIT 5

Variables example

Basics of programming © 2012, Dr. Goldschmidt Balázs, BME IIT 6

int main() {
int a;
int b = 10, c;

a = 13;
c = a+b;

return a;
}

type
name

default value

expression

value
assignment

3

Types

� Integer types
� char, short, int, long, long long
� precision differs

� int is always the efficient type

� unsigned
� no negative value -> 2 times precision

� Floating point types
� float, double, long double
� precision differs
� double is most common

Basics of programming © 2012, Dr. Goldschmidt Balázs, BME IIT 7

Special types

� Logical
� no explicit logical type (bool, boolean, etc)
� all types can be used as logical
� non-zero value: true
� zero value: false

� String (text, words)
� no string type (string, word, etc.)
� arrays of chars are used instead
�more later

Basics of programming © 2012, Dr. Goldschmidt Balázs, BME IIT 8

Expressions

� Built from variables, operators, and expressions

� Single variable is a basic expression

� E.g.: a = b+c*d+(a*c);

� Left value
� expression on the left side of an assignment
�mostly singular variables

� Right value
� expression on the right side of an assignment
� any expression

Basics of programming © 2012, Dr. Goldschmidt Balázs, BME IIT 9

4

Operators

� Operators are used in expressions

� Operators have
� order of evaluation
� association
� bracketing

� precedence
� e.g. multiplication has precedence over addition

� operands
� 1, 2, 3

� possible side-effect
� e.g. =, +=, etc.

Basics of programming © 2012, Dr. Goldschmidt Balázs, BME IIT 10

Most frequent operators

� Arithmetic
� +, -, *,
� usual semantics

� /
� int and floating point differ

� take care! 12/5 -> 2 vs 12.0/5 -> 2.4

�%
� modulo

� result is always in the “bigger” type
� no side-effect

Basics of programming © 2012, Dr. Goldschmidt Balázs, BME IIT 11

Most frequent operators

� Assignment
� =
� left operand gets result of right operand (expression)

� +=, -=, etc.
� e1 o= e2 always means e1 = (e1) o (e2)

� has side-effect
� left operand is modified

� result
� right operand

� cascade use: a = b = c;

Basics of programming © 2012, Dr. Goldschmidt Balázs, BME IIT 12

5

Most frequent operators

� Logical
� ==, != (equals, not equals)
� &&, ||, ! (and, or, not)
� lazy evaluation
� e.g. f(x) && g(x);

� no side-effect
�mostly for integer types (cf. no logical type)

Basics of programming © 2012, Dr. Goldschmidt Balázs, BME IIT 13

Most frequent operators

� Bitwise
� ~
� ,̂ &, |
� for integer types, works bit-by-bit
� no side-effect

Basics of programming © 2012, Dr. Goldschmidt Balázs, BME IIT 14

Precedence and associativity

� - (unary), ~, ! (left)

� *, /, % (right)

� +, - (right)

� <, <=, >, >= (left)

� ==, != (left)

� &; ^; |; &&; || (left)

� =, *=, /=, etc, (right)

� decreasing order of
precedence

� associativity in
parenthesis

Basics of programming © 2012, Dr. Goldschmidt Balázs, BME IIT 15

6

Control structures

� Functions are built from statements
�expression (result is thrown away)

�function call

�control
� block
� if-else
� for
� while, do-while
� switch-case

Basics of programming © 2012, Dr. Goldschmidt Balázs, BME IIT 16

Block

� Bundles statements
� Can have own variables
� Advised for other control structures
�for, while, if-else

� E.g.:

Basics of programming © 2012, Dr. Goldschmidt Balázs, BME IIT 17

{
int t1 = x+2;
int t2 = 12;

t1 = t1+t2;
x = x-t1;

}

Conditional branch: if-else

� Choice from two options

� Parameter: logical expression

� Else may be omitted

� Use blocks!

� E.g.:

Basics of programming © 2012, Dr. Goldschmidt Balázs, BME IIT 18

if (x > y) {
int t = y;
y = x;
x = y;

} else {
x = 0;

}

7

Multiple conditions: switch-case

� Multiple choices
� only for constant integer values

� Each choice should end with break

� Default choice: default

� E.g.:

Basics of programming © 2012, Dr. Goldschmidt Balázs, BME IIT 19

switch (x) {
case 1:

y = 13;
break;

case 2:
y = 20;
break;

default:
y = 0;

}

Loops: while

� Unknown number of repetitions

� Parameter: logical expression

� May not run

� E.g.:

Basics of programming © 2012, Dr. Goldschmidt Balázs, BME IIT 20

while (x > 0) {
x = x-5;
y += 1;

}

Loops: do-while

� Like while, but
� runs at least once
� condition check at the end

� E.g.:

Basics of programming © 2012, Dr. Goldschmidt Balázs, BME IIT 21

do {
x = x-5;
y += 1;

} while (x > 0);

8

Loops: for

� Complex loop

� Mostly for iteration

� Parameters:
� initialization
� condition (logical expression)
� step expression

� May not run

Basics of programming © 2012, Dr. Goldschmidt Balázs, BME IIT 22

Loops: for (cont’d)

� E.g.:

�While equivalent:

Basics of programming © 2012, Dr. Goldschmidt Balázs, BME IIT 23

y = 1;
for (x=1; x<=n; x+=1) {

y *= x;
}

y = 1;
x=1;
while (x<=n) {

y *= x;
x += 1;

}

Skip and stop: continue-break

� If loop should start from beginning
�continue

�e.g.:

� If loop should stop
�break

�e.g.:

Basics of programming © 2012, Dr. Goldschmidt Balázs, BME IIT 24

y = 1;
for (x=1; x<=n; x+=1) {

if (x%2==0) continue;
y *= x;

}

y = 1;
for (x=1; x<=n; x+=1) {

if (x%5==0) break;
y *= x;

}

9

Keywords

� Can not be used as identifiers (variable,
function, typename, etc.)
auto, break, case, char, const, continue,
default, do, double, else, enum, extern,
float, for, goto, if, int, long,
register, return, short, signed, sizeof,
static, struct, switch, typedef,
union, unsigned, void, volatile, while

Basics of programming © 2012, Dr. Goldschmidt Balázs, BME IIT 25

Simple output

� Input and output in C is not easy

� Simple output for exercises
� text
� printf("hello world");

� printf("hello world\n");

� int
� printf("%d", x);

� double
� printf("%lf", x);

Basics of programming © 2012, Dr. Goldschmidt Balázs, BME IIT 26

Simple input

� Simple input for exercises
� int
� scanf("%d", &x);

� double
� scanf("%lf", &x);

Basics of programming © 2012, Dr. Goldschmidt Balázs, BME IIT 27

int x,y;
scanf("%lf", &x);
scanf("%lf", &y);

printf("%lf\n", x+y);

